İç Isı Değiştiricili Transkritik bir Isı Pompasının Performansının Farklı Çalışma Şartlarındaki Performansının Deneysel İncelenmesi
Yıl 2023,
Cilt: 5 Sayı: 1, 1 - 8, 23.06.2023
Arif Emre Özgür
,
Özdemir Deniz
,
Murat Oğuz
Öz
Isı pompaları sürdürülebilir bir ısıtma çözümüdür. Bu sistemlerde soğutucu akışkanlar kullanılmaktadır. Bu akışkanların sentetik olanları, sera etkileri nedeniyle küresel ısınma probleminin artmasına neden olmaktadır. Bu sebeple alternatif ve sürdürülebilir akışkan arayışları artmıştır. Bu çalışmada, alternatif ve sürdürülebilir bir soğutucu akışkan olan R744’ün (CO2) kullanıldığı, tek kademeli, iç ısı değiştiricili, Elektronik Genleşme Vanası (EGV) kontrollü transkritik bir ısı pompası sisteminin performansı deneysel olarak incelenmiştir. Farklı EGV açıklık oranları ile sistemin farklı çalışma basınçlarında çalışması sağlanmıştır. Farklı gaz soğutucu ve buharlaştırıcı basınçları için sistemin ısıtma tesir katsayısı (COPh) ve soğutucu akışkan debisi değişimleri, deneysel olarak, incelenmiştir. Sistem, havadan suya ısı pompası olarak kurulmuştur ve ısı pompasından elde edilen su sıcaklıkları ve debisi kayıt altına alınmıştır. Sistem kararlı rejim şartlarında, EGV açıklık yüzdesi ve sıcak su debisi değerleri değiştirilmiştir. Tüm ölçüm parametreleri ve sistemin çektiği güç değerleri kaydedilmiştir. 7 farklı çalışma şartı için COPh değeri hesaplanmıştır. Sistem performansının belirli gaz soğutucu basınçlarında maksimuma ulaştığı gözlemlenmiştir. Optimum gaz soğutucu basıncı civarında sistem performansının maksimuma ulaştığı görülmüştür.
Destekleyen Kurum
Isparta Uygulamalı Bilimler Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
2021-YL1-0121
Kaynakça
- Bayrakçı, H., Özgür, A. E., & Akdağ, A. E. (2015). Aynı soğutma yükü için CO2’li ısı pompalarının enerji sarfiyatlarının karşılaştırılması. IX. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 33-38.
- Cao, F., Ye, Z., & Wang, Y. (2020). Experimental investigation on the influence of internal heat exchanger in a transcritical CO2 heat pump water heater. Applied Thermal Engineering, 28(168), 114855. https://doi.org/10.1016/j.applthermaleng.2019.114855
- Çengel, Y. A., & Boles, M.A., (1996). Mühendislik Yaklaşımıyla Termodinamik, Literatür Yayıncılık.
- Emani, M. S., & Mandal, B. K. (2018). The use of natural refrigerants in refrigeration and air conditioning systems: A review. IOP Conference Series: Materials Science and Engineering, 377(1), 012064. https://doi.org/10.1088/1757-899X/377/1/012064
- Kasap, F., Acül, H., Canbaz, H., & Erbil, S. (2011). R744 (CO2) soğutucu akışkanlı soğutma sistemleri, kanatlı borulu R744 (CO2) evaporatör ve gaz soğutucu tasarım esasları. X. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 369-389.
- Kim, M. H., Pettersen, J., & Bullard, C. W. (2004). Fundamental process and system design issues in CO2 vapor compression systems. Progress in Energy and Combustion Science, 30(2), 119-174. https://doi.org/10.1016/j.pecs.2003.09.002
- Oton-Martínez, R. A., Illan-Gomez, F., García-Cascales, J., Velasco, F. J. S., & Haddouche, M. R. (2022). Impact of an internal heat exchanger on a transcritical CO2 heat pump under optimal pressure conditions Optimal-pressure performance of CO2 heat pump with IHX. Applied Thermal Engineering, 215, 118991. https://doi.org/10.1016/j.applthermaleng.2022.118991
- Qin, X., Wang, D., Jin, Z., Wang, J., Zhang, G., & Li, H. (2021). A comprehensive investigation on the effect of internal heat exchanger based on a novel evaluation method in the transcritical CO2 heat pump system. Renewable Energy, 26(178), 574-586. https://doi.org/10.1016/j.renene.2021.06.082
- Rony, R. U., Yang, H., Krishnan, S., & Song, J. (2019). Recent advances in transcritical CO2 (R744) heat pump system: A review. Energies, 12(3), 457. https://doi.org/10.3390/en12030457
- Wang, Y., Ye, Z., Yin, X., Song, Y., & Cao, F. (2021). Energy, exergy and exergoeconomic evaluation of the air source transcritical CO2 heat pump with internal heat exchanger for space heating. International Journal of Refrigeration, 29(130), 14-26. https://doi.org/10.1016/j.ijrefrig.2021.06.028
- Zhang, X. R., Yamaguchi, H., Fujima, K., Enomoto, M., & Sawada, N. (2006). Study of solar energy powered transcritical cycle using supercritical carbon dioxide. International Journal of Energy Research, 30(14), 1117-1129. https://doi.org/10.1002/er.1201
Analysis of Transcritical Heat Pump System with Internal Heat Exchanger at Different Operating Conditions
Yıl 2023,
Cilt: 5 Sayı: 1, 1 - 8, 23.06.2023
Arif Emre Özgür
,
Özdemir Deniz
,
Murat Oğuz
Öz
Heat pumps are a sustainable heating solution. Refrigerants are used in these systems. The synthetic ones of these fluids cause an increase in the global warming problem due to greenhouse effects. For this reason, the search for alternative and sustainable fluids has increased. In this study, the performance of a single-stage, internal heat exchanger, Electronic Expansion Valve (EGV) controlled transcritical heat pump system using R744 (CO2), an alternative and sustainable refrigerant, was experimentally investigated. With different EGV opening rates, the system is provided to operate at different operating pressures. The heating effect coefficient (COPh) of the system and the refrigerant flow rate changes for different gas cooler and evaporator pressures were investigated experimentally. The system was installed as an air-to-water heat pump and the water temperatures and flow rates obtained from the heat pump were recorded. EGV opening percentage and hot water flow rate values were changed in system steady regime conditions. All measurement parameters and the power drawn by the system were recorded. COPh value was calculated for 7 different operating conditions. It has been observed that the system performance reaches its maximum at certain gas refrigerant pressures. It has been observed that the system performance reaches its maximum around the optimum gas refrigerant pressure.
Proje Numarası
2021-YL1-0121
Kaynakça
- Bayrakçı, H., Özgür, A. E., & Akdağ, A. E. (2015). Aynı soğutma yükü için CO2’li ısı pompalarının enerji sarfiyatlarının karşılaştırılması. IX. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 33-38.
- Cao, F., Ye, Z., & Wang, Y. (2020). Experimental investigation on the influence of internal heat exchanger in a transcritical CO2 heat pump water heater. Applied Thermal Engineering, 28(168), 114855. https://doi.org/10.1016/j.applthermaleng.2019.114855
- Çengel, Y. A., & Boles, M.A., (1996). Mühendislik Yaklaşımıyla Termodinamik, Literatür Yayıncılık.
- Emani, M. S., & Mandal, B. K. (2018). The use of natural refrigerants in refrigeration and air conditioning systems: A review. IOP Conference Series: Materials Science and Engineering, 377(1), 012064. https://doi.org/10.1088/1757-899X/377/1/012064
- Kasap, F., Acül, H., Canbaz, H., & Erbil, S. (2011). R744 (CO2) soğutucu akışkanlı soğutma sistemleri, kanatlı borulu R744 (CO2) evaporatör ve gaz soğutucu tasarım esasları. X. Ulusal Tesisat Mühendisliği Kongresi, İzmir, 369-389.
- Kim, M. H., Pettersen, J., & Bullard, C. W. (2004). Fundamental process and system design issues in CO2 vapor compression systems. Progress in Energy and Combustion Science, 30(2), 119-174. https://doi.org/10.1016/j.pecs.2003.09.002
- Oton-Martínez, R. A., Illan-Gomez, F., García-Cascales, J., Velasco, F. J. S., & Haddouche, M. R. (2022). Impact of an internal heat exchanger on a transcritical CO2 heat pump under optimal pressure conditions Optimal-pressure performance of CO2 heat pump with IHX. Applied Thermal Engineering, 215, 118991. https://doi.org/10.1016/j.applthermaleng.2022.118991
- Qin, X., Wang, D., Jin, Z., Wang, J., Zhang, G., & Li, H. (2021). A comprehensive investigation on the effect of internal heat exchanger based on a novel evaluation method in the transcritical CO2 heat pump system. Renewable Energy, 26(178), 574-586. https://doi.org/10.1016/j.renene.2021.06.082
- Rony, R. U., Yang, H., Krishnan, S., & Song, J. (2019). Recent advances in transcritical CO2 (R744) heat pump system: A review. Energies, 12(3), 457. https://doi.org/10.3390/en12030457
- Wang, Y., Ye, Z., Yin, X., Song, Y., & Cao, F. (2021). Energy, exergy and exergoeconomic evaluation of the air source transcritical CO2 heat pump with internal heat exchanger for space heating. International Journal of Refrigeration, 29(130), 14-26. https://doi.org/10.1016/j.ijrefrig.2021.06.028
- Zhang, X. R., Yamaguchi, H., Fujima, K., Enomoto, M., & Sawada, N. (2006). Study of solar energy powered transcritical cycle using supercritical carbon dioxide. International Journal of Energy Research, 30(14), 1117-1129. https://doi.org/10.1002/er.1201