Araştırma Makalesi
BibTex RIS Kaynak Göster

Data Frictions in Health Information Infrastructure: The Role of Standards in Mobile Health Applications

Yıl 2025, Cilt: 39 Sayı: 3, 288 - 320, 30.09.2025
https://doi.org/10.24146/tk.1640735

Öz

Purpose: This study aims to identify data frictions occurring in the standard dimension of data flowing from mobile health applications to the health information infrastructure. Additionally, it seeks to assess the impact of these frictions on healthcare services and to propose solutions to minimize or eliminate disruptions in data flow.

Method: Qualitative methods were used in this study. Semi-structured interviews were conducted with four physicians and four technical personnel. All interview records were transcribed, and the data obtained were analyzed using content analysis through MaxQDA qualitative data analysis software.

Findings: Physicians emphasized the importance of integration in mobile health applications, highlighting clinical decision support systems that are powered by accurate and standardized data, which facilitates effective diagnosis and treatment processes. Technical personnel have faced challenges due to integration deficiencies in health information systems, inaccurate data sources, legal procedures, and local variations. The widespread use and sustainability of these systems depend on their integration with health information systems, support from accurate and standardized data, compliance with the legal and local differences, and being user-friendly, browser-compatible, and device-compatible.

Implications: Data management plays a critical role in mobile health systems, and the examined pilot system does not fully comply with existing standards. To ensure the efficient functioning of health information systems, it is essential to implement necessary improvements to eliminate or minimize existing and potential data friction.

Originality: This study is among the first studies to examine the concept of data friction in health information systems within the context of Türkiye, specifically in the framework of mobile health applications. While previous research has addressed various aspects of data flow in health information systems, this study uniquely focuses on the data frictions experienced during the integration of data from mobile health applications with standard health information systems, offering a novel contribution to the literature.

Kaynakça

  • Adler-Milstein, J. ve Jha, A. K. (2017). HITECH Act drove large gains in hospital electronic health record adoption. Health Affairs, 36(8), 1416–1422. https://doi.org/10.1377/hlthaff.2016.1651
  • Ashrafi, N., Kuilboer, J. P., Stull, T. (2018). Semantic interoperability in healthcare: Challenges and roadblocks. Proceedings of STPIS'18 içinde (ss. 119–122).
  • Attepe Özden, S., Tekindal, M., Gedik, T. E., Erim, F. ve Tekindal, M. A. (2022). Nitel araştırmaların rapor edilmesi: COREQ kontrol listesinin Türkçe uyarlaması. Avrupa Bilim ve Teknoloji Dergisi, 35, 522-529. https://doi.org/10.31590/ejosat.976957
  • Aula, V. (2019). Institutions, infrastructures, and data friction: Reforming secondary use of health data in Finland. Big Data & Society, 6(2), 1-13. https://doi.org/10.1177/2053951719875980
  • Bates, J., Lin, Y. W. ve Goodale, P. (2016). Data journeys: Capturing the socio-material constitution of data objects and flows. Big Data & Society, 3(2). https://doi.org/10.1177/2053951716654502
  • Bates, J. (2017). The politics of data friction. Journal of Documentation, 74(2), 412-429. https://doi.org/10.1108/JD-05-2017-0080
  • Bates, J., Goodale, P., Lin, Y. ve Andrews, P. C. (2019). Assembling an infrastructure for historic climate data recovery: Data friction in practice. Journal of Documentation, 75(4), 791-806. https://doi.org/10.1108/JD-08-2018-0130
  • Bonde, M., Bossen, C. ve Danholt, P. (2019). Data-work and friction: Investigating the practices of repurposing healthcare data. Health Informatics Journal, 25(3), 558-566. https://doi.org/10.1177/1460458219856462
  • Chen, Z., Liang, N., Zhang, H., Li, H., Yang, Y., Zong, X., Chen, Y., Wang, Y. ve Shi, N. (2023). Harnessing the power of clinical decision support systems: Challenges and opportunities. Open Heart, 10(2), e002432. https://doi.org/10.1136/openhrt-2023-002432
  • Chung, D. (2017). Health information infrastructure: Flows and frictions [Doktora tezi, Indiana University]. https://www.proquest.com/pqdtglobal/docview/1947044044/abstract/71CF57DAE5E54B1EPQ/1 Chung, D. (2020). Building a health information infrastructure to support the medication reconciliation process. Journal of the Korean Society for Library and Information Science, 54(3), 285-314. https://doi.org/10.4275/KSLIS.2020.54.3.285
  • Cicioğlu, M. ve Çalhan, A. (2021). Bulut destekli medikal nesnelerin interneti tabanlı uzaktan sağlık izleme sistemi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1083-1096. https://doi.org/10.17482/uumfd.856981
  • D'Amore, J. D., McCrary, L. K., Denson, J., Li, C., Vitale, C. J., Tokachichu, P., Sittig, D. F., McCoy, A. B. ve Wright, A. (2021). Clinical data sharing improves quality measurement and patient safety. Journal of the American Medical Informatics Association, 28(7), 534-1542. https://doi.org/10.1093/jamia/ocab039
  • Degerli, M. (2020). A mobile health application for healthy living: HWOW (Healthier Work for Office Workers). 2020 Turkish National Software Engineering Symposium (UYMS), Istanbul, Turkey içinde (ss. 1-3). https://doi.org/10.1109/UYMS50627.2020.9247024
  • Degerli, M. ve Ozkan Yildirim, S. (2020). Identifying critical success factors for wearable medical devices: A comprehensive exploration. Universal Access in the Information Society, 21, 121-143. https://doi.org/10.1007/s10209-020-00763-2
  • Edwards, P. (2010). A vast machine: Computer models, climate data, and the politics of global warming. MIT Press.
  • European Commission. (2021). Pre-commercial Procurement of innovative ICT-enabled monitoring to improve health status and optimise hypertension care. https://cordis.europa.eu/project/id/856698
  • Lincoln, Y. S. ve Guba, E. G. (1985). Naturalistic inquiry. Sage Publications.
  • Miles, M. B. ve Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2. bs.). SAGE Publications.
  • Merriam, S. B. (2013). Nitel araştırma. (S. Turan, Çev.). Nobel Akademik Yayıncılık.
  • Olmos-Vega, F. M., Stalmeijer, R. E., Varpio, L. ve De Bruin, A. B. H. (2022). A practical guide to reflexivity in qualitative research: AMEE Guide No. 149. Medical Teacher, 44(5), 564–573. https://doi.org/10.1080/0142159X.2022.2057287
  • Pancar, T. ve Ozkan Yildirim, S. (2023). Exploring factors affecting consumers' adoption of wearable devices to track health data. Universal Access in the Information Society, 22(2), 331-349. https://doi.org/10.1007/s10209-021-00848-6
  • Qi, J., Yang, P., Min, G., Amft, O., Dong, F. ve Xu, L. (2017). Advanced internet of things for personalised healthcare systems: A survey. Pervasive and Mobile Computing, 41, 132-149. https://doi.org/10.1016/j.pmcj.2017.06.018
  • Sedlak, B., Pujol, V. C., Donta, P. K. ve Dustdar, S. (2023). Controlling data gravity and data friction: from metrics to multidimensional elasticity strategies. IEEE SSE 2023, Chicago, USA içinde (ss. 43-49).
  • Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N. ve Kroeker, K. I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digital Medicine, 3(17). https://doi.org/10.1038/s41746-020-0221-y
  • Tong, A., Sainsbury, P. ve Craig, J. (2007). Consolidated criteria for reporting qualitative research (COREQ): A 32-item checklist for interviews and focus groups. International Journal for Quality in Health Care, 19(6), 349–357. https://doi.org/10.1093/intqhc/mzm042
  • United Nations Development Programme (UNDP). (30 Aralık 2024). Health Information Systems. https://undp-capacitydevelopmentforhealth.org/category/health-system-components/health-information-systems/
  • Ünlü, A. M. ve Çakmak, T. (2023). Kamu sektöründe kurumlar arasında bilgi paylaşımı: Türkiye’deki politika ve yasal düzenlemelere yönelik bir değerlendirme. Bilgi Yönetimi, 6(1), 1–20. https://doi.org/10.33721/by.1251635
  • Vassilakopoulou, P., Grisot, M. ve Aanestad, M. (2019). Friction forces and patient-centredness: Understanding how established logics endure during infrastructure transformation. Health Informatics Journal, 25(2), 361-371. https://doi.org/10.1177/1460458217712053
  • Wadmann, S. ve Hoeyer, K. (2018). Dangers of the digital fit: Rethinking seamlessness and social sustainability in data-intensive healthcare. Big Data & Society, 5(1). https://doi.org/10.1177/2053951717752964
  • Wang, Y., Chen, H., Long, R. ve Gu, X. (2024) Mechanical modeling of friction phenomena in social systems based on friction force. Humanities and Social Sciences Communications, 11, 904. https://doi.org/10.1057/s41599-024-03272-2
  • WHO Global Observatory for eHealth. (‎2011)‎. mHealth: New horizons for health through mobile technologies: second global survey on eHealth. World Health Organization. https://apps.who.int/iris/handle/10665/44607
  • World Health Organization (2021). SMART guidelines: Digital adaptation kits. https://www.who.int/teams/digital-health-and-innovation/smart-guidelines
  • Yıldırım, A. ve Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Yıldırım, B. F. (2019). Sağlığın kişiselleşmesi ve kişisel sağlık bilgi sistemleri. Bilgi Yönetimi, 2(2), 127-135. https://doi.org/10.33721/by.642698

Sağlık Bilgi Altyapısında Veri Sürtünmeleri: Mobil Sağlık Uygulamalarında Standartların Rolü

Yıl 2025, Cilt: 39 Sayı: 3, 288 - 320, 30.09.2025
https://doi.org/10.24146/tk.1640735

Öz

Amaç: Bu çalışma, sağlık bilgi altyapısınıda mobil sağlık uygulamalarından akan verilerle ilgili standart boyutta ortaya çıkan veri sürtünmelerini tespit etmeyi amaçlamaktadır. Ayrıca, bu sürtünmelerin sağlık hizmetleri üzerindeki etkilerini değerlendirerek, veri akışındaki kesintilerin en aza indirilmesi veya ortadan kaldırılması için çözüm önerileri geliştirmeyi hedeflemektedir.

Yöntem: Araştırma kapsamında nitel yöntemler kullanılmış, dört doktor ve dört teknik personel ile yarı yapılandırılmış görüşme gerçekleştirilmiştir. Tüm görüşme kayıtları transkribe edilmiş ve elde edilen veriler MaxQDA nitel veri analiz yazılımı kullanılarak içerik analizi yöntemiyle değerlendirilmiştir.

Bulgular: Doktorlar, mobil sağlık uygulamalarında entegrasyonun yanı sıra doğru ve standartlara uygun verilerle çalışan klinik karar destek sistemlerinin, teşhis ve tedavi süreçlerindeki önemini vurgulamışlardır. Teknik personel ise, sağlık bilgi sistemlerindeki entegrasyon eksiklikleri, hatalı veri kaynakları ve yerel farklılıklar nedeniyle problemler yaşamışlardır. Sistemlerin yaygın kullanımı ve sürdürülebilirliği, sağlık bilgi sistemleri ile entegre, doğru ve standarda uygun verilerle desteklenen, ülkelerin yerel farklılıklarına uyumlu, kullanıcı dostu, tarayıcı ve cihaz uyumlu olmalarına bağlıdır.

Sonuç: Mobil sağlık sistemlerinde veri yönetimi kritik bir rol oynamaktadır ve incelenen pilot sistemin standartlarla tam uyum sağlamadığı görülmektedir. Sağlık bilgi sistemlerinin daha etkin çalışabilmesi için, mevcut ve olası veri sürtünmelerinin ortadan kaldırılmasına yönelik gerekli iyileştirmelerin yapılması zorunludur.

Özgünlük: Bu araştırma, Türkiye bağlamında sağlık bilgi sistemlerinde veri sürtünmesi kavramını mobil sağlık uygulamaları çerçevesinde ele alan ilk araştırmalardan biridir. Çalışma özellikle mobil sağlık uygulamalarından gelen verilerin standartlarla entegrasyon sürecinde yaşanan sürtünmelere odaklanarak literatüre özgün bir katkı sunmaktadır.

Kaynakça

  • Adler-Milstein, J. ve Jha, A. K. (2017). HITECH Act drove large gains in hospital electronic health record adoption. Health Affairs, 36(8), 1416–1422. https://doi.org/10.1377/hlthaff.2016.1651
  • Ashrafi, N., Kuilboer, J. P., Stull, T. (2018). Semantic interoperability in healthcare: Challenges and roadblocks. Proceedings of STPIS'18 içinde (ss. 119–122).
  • Attepe Özden, S., Tekindal, M., Gedik, T. E., Erim, F. ve Tekindal, M. A. (2022). Nitel araştırmaların rapor edilmesi: COREQ kontrol listesinin Türkçe uyarlaması. Avrupa Bilim ve Teknoloji Dergisi, 35, 522-529. https://doi.org/10.31590/ejosat.976957
  • Aula, V. (2019). Institutions, infrastructures, and data friction: Reforming secondary use of health data in Finland. Big Data & Society, 6(2), 1-13. https://doi.org/10.1177/2053951719875980
  • Bates, J., Lin, Y. W. ve Goodale, P. (2016). Data journeys: Capturing the socio-material constitution of data objects and flows. Big Data & Society, 3(2). https://doi.org/10.1177/2053951716654502
  • Bates, J. (2017). The politics of data friction. Journal of Documentation, 74(2), 412-429. https://doi.org/10.1108/JD-05-2017-0080
  • Bates, J., Goodale, P., Lin, Y. ve Andrews, P. C. (2019). Assembling an infrastructure for historic climate data recovery: Data friction in practice. Journal of Documentation, 75(4), 791-806. https://doi.org/10.1108/JD-08-2018-0130
  • Bonde, M., Bossen, C. ve Danholt, P. (2019). Data-work and friction: Investigating the practices of repurposing healthcare data. Health Informatics Journal, 25(3), 558-566. https://doi.org/10.1177/1460458219856462
  • Chen, Z., Liang, N., Zhang, H., Li, H., Yang, Y., Zong, X., Chen, Y., Wang, Y. ve Shi, N. (2023). Harnessing the power of clinical decision support systems: Challenges and opportunities. Open Heart, 10(2), e002432. https://doi.org/10.1136/openhrt-2023-002432
  • Chung, D. (2017). Health information infrastructure: Flows and frictions [Doktora tezi, Indiana University]. https://www.proquest.com/pqdtglobal/docview/1947044044/abstract/71CF57DAE5E54B1EPQ/1 Chung, D. (2020). Building a health information infrastructure to support the medication reconciliation process. Journal of the Korean Society for Library and Information Science, 54(3), 285-314. https://doi.org/10.4275/KSLIS.2020.54.3.285
  • Cicioğlu, M. ve Çalhan, A. (2021). Bulut destekli medikal nesnelerin interneti tabanlı uzaktan sağlık izleme sistemi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 1083-1096. https://doi.org/10.17482/uumfd.856981
  • D'Amore, J. D., McCrary, L. K., Denson, J., Li, C., Vitale, C. J., Tokachichu, P., Sittig, D. F., McCoy, A. B. ve Wright, A. (2021). Clinical data sharing improves quality measurement and patient safety. Journal of the American Medical Informatics Association, 28(7), 534-1542. https://doi.org/10.1093/jamia/ocab039
  • Degerli, M. (2020). A mobile health application for healthy living: HWOW (Healthier Work for Office Workers). 2020 Turkish National Software Engineering Symposium (UYMS), Istanbul, Turkey içinde (ss. 1-3). https://doi.org/10.1109/UYMS50627.2020.9247024
  • Degerli, M. ve Ozkan Yildirim, S. (2020). Identifying critical success factors for wearable medical devices: A comprehensive exploration. Universal Access in the Information Society, 21, 121-143. https://doi.org/10.1007/s10209-020-00763-2
  • Edwards, P. (2010). A vast machine: Computer models, climate data, and the politics of global warming. MIT Press.
  • European Commission. (2021). Pre-commercial Procurement of innovative ICT-enabled monitoring to improve health status and optimise hypertension care. https://cordis.europa.eu/project/id/856698
  • Lincoln, Y. S. ve Guba, E. G. (1985). Naturalistic inquiry. Sage Publications.
  • Miles, M. B. ve Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2. bs.). SAGE Publications.
  • Merriam, S. B. (2013). Nitel araştırma. (S. Turan, Çev.). Nobel Akademik Yayıncılık.
  • Olmos-Vega, F. M., Stalmeijer, R. E., Varpio, L. ve De Bruin, A. B. H. (2022). A practical guide to reflexivity in qualitative research: AMEE Guide No. 149. Medical Teacher, 44(5), 564–573. https://doi.org/10.1080/0142159X.2022.2057287
  • Pancar, T. ve Ozkan Yildirim, S. (2023). Exploring factors affecting consumers' adoption of wearable devices to track health data. Universal Access in the Information Society, 22(2), 331-349. https://doi.org/10.1007/s10209-021-00848-6
  • Qi, J., Yang, P., Min, G., Amft, O., Dong, F. ve Xu, L. (2017). Advanced internet of things for personalised healthcare systems: A survey. Pervasive and Mobile Computing, 41, 132-149. https://doi.org/10.1016/j.pmcj.2017.06.018
  • Sedlak, B., Pujol, V. C., Donta, P. K. ve Dustdar, S. (2023). Controlling data gravity and data friction: from metrics to multidimensional elasticity strategies. IEEE SSE 2023, Chicago, USA içinde (ss. 43-49).
  • Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N. ve Kroeker, K. I. (2020). An overview of clinical decision support systems: benefits, risks, and strategies for success. npj Digital Medicine, 3(17). https://doi.org/10.1038/s41746-020-0221-y
  • Tong, A., Sainsbury, P. ve Craig, J. (2007). Consolidated criteria for reporting qualitative research (COREQ): A 32-item checklist for interviews and focus groups. International Journal for Quality in Health Care, 19(6), 349–357. https://doi.org/10.1093/intqhc/mzm042
  • United Nations Development Programme (UNDP). (30 Aralık 2024). Health Information Systems. https://undp-capacitydevelopmentforhealth.org/category/health-system-components/health-information-systems/
  • Ünlü, A. M. ve Çakmak, T. (2023). Kamu sektöründe kurumlar arasında bilgi paylaşımı: Türkiye’deki politika ve yasal düzenlemelere yönelik bir değerlendirme. Bilgi Yönetimi, 6(1), 1–20. https://doi.org/10.33721/by.1251635
  • Vassilakopoulou, P., Grisot, M. ve Aanestad, M. (2019). Friction forces and patient-centredness: Understanding how established logics endure during infrastructure transformation. Health Informatics Journal, 25(2), 361-371. https://doi.org/10.1177/1460458217712053
  • Wadmann, S. ve Hoeyer, K. (2018). Dangers of the digital fit: Rethinking seamlessness and social sustainability in data-intensive healthcare. Big Data & Society, 5(1). https://doi.org/10.1177/2053951717752964
  • Wang, Y., Chen, H., Long, R. ve Gu, X. (2024) Mechanical modeling of friction phenomena in social systems based on friction force. Humanities and Social Sciences Communications, 11, 904. https://doi.org/10.1057/s41599-024-03272-2
  • WHO Global Observatory for eHealth. (‎2011)‎. mHealth: New horizons for health through mobile technologies: second global survey on eHealth. World Health Organization. https://apps.who.int/iris/handle/10665/44607
  • World Health Organization (2021). SMART guidelines: Digital adaptation kits. https://www.who.int/teams/digital-health-and-innovation/smart-guidelines
  • Yıldırım, A. ve Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri. Seçkin Yayıncılık.
  • Yıldırım, B. F. (2019). Sağlığın kişiselleşmesi ve kişisel sağlık bilgi sistemleri. Bilgi Yönetimi, 2(2), 127-135. https://doi.org/10.33721/by.642698
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Sistemleri Geliştirme Metodolojileri ve Uygulamaları, Bilgi Sistemleri (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Gökçen Badem Rutbil 0000-0002-0811-4809

Yurdagül Ünal 0000-0002-6519-9845

Erken Görünüm Tarihi 28 Eylül 2025
Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 16 Şubat 2025
Kabul Tarihi 23 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 39 Sayı: 3

Kaynak Göster

APA Badem Rutbil, G., & Ünal, Y. (2025). Sağlık Bilgi Altyapısında Veri Sürtünmeleri: Mobil Sağlık Uygulamalarında Standartların Rolü. Türk Kütüphaneciliği, 39(3), 288-320. https://doi.org/10.24146/tk.1640735

Bu dergi içeriği CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1 ile lisanslanmaktadır.