Derleme
BibTex RIS Kaynak Göster

İskelet Kaslarının Pasif Mekanik Özellikleri ve Egzersiz

Yıl 2023, Cilt: 3 Sayı: 1, 94 - 105, 31.01.2023

Öz

Kas lifleri kuvvet iletiminin yanı sıra mekanik özellikleriyle de çevre dokularla etkileşim içerisindedir. İskelet kasının pasif mekanik özellikleri kas fonksiyonunun anlaşılmasında kritik bir öneme sahiptir. Mekanik özelliklerin tanımlanması ile hastalık, yaşlanma ve travma sebebiyle meydana gelen değişikliklerin teşhis ve tedavisinde olumlu gelişmeler sağlanmıştır.
Kas dokusunun mekanik özelliklerinin tanımlanması ve egzersiz etkileşiminin araştırılması ile kas yapısının performansa ve yaralanmalara etkileri açıklığa kavuşabilir. Klinikte kas dokusunun mekanik özelliklerinin değerlendirilmesi amacıyla farklı yöntemler yer almaktadır. Manyetik rezonans elastografi, ultrasonografik görüntüleme, miyotonometri ve elektromyografi iskelet kaslarının pasif mekanik özelliklerinin değerlendirilmesinde kullanılan yöntemlerdendir. Ultrason elastografi genellikle egzersize yanıt olarak ortaya çıkan akut ve kronik değişikliklerden pennasyon açısı, sertlik, kas kalınlığı ve kan akışı gibi değişkenleri incelemek amacıyla kullanılmaktadır. Literatürde farklı egzersiz yaklaşımlarından germe ve kuvvetlendirme programlarının fasikül uzunluğu, kas sertliği ve kas kalınlığı gibi kasın mekanik özelliklerinde değişikliklere neden olabildiği görülmektedir.
Kas dokusunun pasif mekanik özellikleri günlük yaşamdaki hareket paternlerinde veya sportif aktivite tipine göre avantaj ve dezavantaj oluşturabilir. Bu derlemede kas dokusunun mekanik özelliklerini değerlendirme yöntemleri ve farklı egzersiz yaklaşımlarının iskelet kasının pasif mekanik özelliklerine etkileri açıklanmaya çalışıldı. Bu bağlamda yaralanmaların önlenmesinde, atletik performansın geliştirilmesi aşamasında veya rehabilitasyon sürecinde, iskelet kasının pasif mekanik özelliklerinin de göz önünde bulundurulması gerektiği söylenebilir.

Kaynakça

  • Lee Y, Kim M, Lee H. The measurement of stiffness for major muscles with shear wave elastography and myoton: a quantitative analysis study. Diagnostics. 2021;11(3):524.
  • Green, MA, Sinkus R, Gandevia SC, Herbert RD, Bilston LE. Measuring changes in muscle stiffness after eccentric exercise using elastography. NMR in Biomedicine. 2012;25(6):852–858.
  • Agyapong-Badu S, Aird L, Bailey L, Mooney K, Mullix J, Warner M et al. Interrater reliability of muscle tone, stiffness and elasticity measurements of rectus femoris and biceps brachii in healthy young and older males. Working Pap Health Sci. 2013;1(4):1–11.
  • Hawkey A, Morrison D. In-season whole-body vibration training enhances vertical jump performance in professional soccer goalkeepers. Turkish Journal of Sport and Exercise. 2017;19(2):143-149.
  • Sousa N, Mendes R, Silva A, Oliveira J. Combined exercise is more effective than aerobic exercise in the improvement of fall risk factors: a randomized controlled trial in community-dwelling older men. Clin Rehabil. 2017;31(4):478-486.
  • Hedayatpour N, Falla D. Physiological and Neural Adaptations to Eccentric Exercise: Mechanisms and Considerations for Training. Biomed Res Int. 2015;2015:193741.
  • Masi AT, Hannon JC. Human resting muscle tone (HRMT): narrative introduction and modern concepts. Journal of bodywork and movement therapies. 2008;12(4):320-32.
  • Feng YN, Li YP, Liu CL, Zhang ZJ. Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci Rep. 2018;8(1):17064.
  • Cosgrove D, Piscaglia F, Bamber J, Bojunga J, Correas JM, Gilja OH, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 2: Clinical applications. Ultraschall Med. 2013;34(3):238-253.
  • Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85:1435–1445.
  • Bamber J, Cosgrove D, Dietrich CF, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: Basic principles and technology. Ultraschall Med 2013; 34 (02):169–184.
  • Snoj Ž, Wu CH, Taljanovic MS, Dumić-Čule I, Drakonaki EE, Klauser AS. Ultrasound elastography in musculoskeletal radiology: past, present, and future. Semin Musculoskelet Radiol. 2020;24(2):156-166.
  • Ryu JA, Jeong WK. Current status of musculoskeletal application of shear wave elastography. Ultrasonography 2017;36:185–97.
  • Snoj Ž, Wu CH, Taljanovic MS, Dumić-Čule I, Drakonaki EE, Klauser AS. Ultrasound Elastography in Musculoskeletal Radiology: Past, Present, and Future. Semin Musculoskelet Radiol. 2020;24(2):156-166.
  • Balleyguier C, Ciolovan L, Ammari S, Canale S, Sethom S, Al Rouhbane R, et al. Breast elastography: the technical process and its applications. Diag Interv Imaging. 2013; 94: 503-13.
  • Gunaydin G, Citaker S, Cobanoglu G. Effects of different stretching exercises on hamstring flexibility and performance in long term. Science & Sports. 2020;35.6:386-392.
  • Le Sant G, Ates F, Brasseur JL, Nordez A. Elastography study of hamstring behaviors during passive stretching. PLoS One. 2015;10(9):e0139272.
  • Pamboris GM, Noorkoiv M, Baltzopoulos V, Gokalp H, Marzilger R, Mohagheghi AA. Effects of an acute bout of dynamic stretching on biomechanical properties of the gastrocnemius muscle determined by shear wave elastography. PLoS One. 2018;13(5):e0196724.
  • Hirata K, Kanehisa H, Miyamoto N. Acute effect of static stretching on passive stiffness of the human gastrocnemius fascicle measured by ultrasound shear wave elastography. Eur J Appl Physiol. 2017;117(3):493-499.
  • Blazevich AJ. Adaptations in the passive mechanical properties of skeletal muscle to altered patterns of use. J Appl Physiol (1985). 2019;126(5):1483-1491.
  • César EP, Teixeira LDO, Souza DVBC, Gomes PSC. Acute effects of passive static stretching on the vastus lateralis muscle architecture of healthy young men. Rev Bras Cineantropom Hum. 2017;19(5):585-595.
  • Nakamura M, Ikezoe T, Tokugawa T, Ichihashi N. Acute effects of stretching on passive properties of human gastrocnemius muscle-tendon unit: Analysis of differences between hold-relax and static stretching. J Sport Rehabil. 2015;24(3):286-292.
  • e Lima KM, Carneiro SP, Alves Dde S, Peixinho CC, de Oliveira LF. Assessment of muscle architecture of the biceps femoris and vastus lateralis by ultrasound after a chronic stretching program. Clin J Sport Med. 2015;25(1):55-60.
  • Yahata K, Konrad A, Sato S, et al. Effects of a high-volume static stretching programme on plantar-flexor muscle strength and architecture. Eur J Appl Physiol. 2021;121(4):1159-1166
  • McMillian DJ, Moore JH, Hatler BS, Taylor DC. Dynamic vs. static-stretching warm up: the effect on power and agility performance. J Strength Cond Res. 2006;20(3):492-9).
  • Samukawa M, Hattori M, Sugama N, Takeda N. The effects of dynamic stretching on plantar flexor muscle-tendon tissue properties. Man Ther. 2011;16(6):618-622.
  • Konrad A, Stafilidis S, Tilp M. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties. Scand J Med Sci Sports. 2017;27(10):1070-1080.
  • Herda TJ, Herda ND, Costa PB, Walter-Herda AA, Valdez AM, Cramer JT. The effects of dynamic stretching on the passive properties of the muscle-tendon unit. J Sports Sci. 2013;31(5):479-487.
  • Ribeiro AS, Avelar A, Schoenfeld BJ, Ritti Dias RM, Altimari LR, Cyrino ES. Resistance training promotes increase in intracellular hydration in men and women. Eur J Sport Sci. 2014;14(6):578-585.
  • Yamazaki K, Inoue K, Miyamoto N. Passive and active muscle elasticity of medial gastrocnemius is related to performance in sprinters. Eur J Appl Physiol. 2022;122(2):447-457.
  • Dankel SJ, Razzano BM. The impact of acute and chronic resistance exercise on muscle stiffness: a systematic review and meta-analysis. J Ultrasound. 2020;23(4):473-480.
  • Lindstedt SL, LaStayo PC, Reich TE. When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci. 2001;16:256-261
  • Hedayatpour N, Falla D. Physiological and neural adaptations to eccentric exercise: mechanisms and considerations for training. Biomed Res Int. 2015;2015:193741.
  • Timmins RG, Shield AJ, Williams MD, Lorenzen C, Opar DA. Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med. 2016;50(23):1467-1472.
  • Seymore KD, Domire ZJ, DeVita P, Rider PM, Kulas AS. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength. Eur J Appl Physiol. 2017;117(5):943-953.
  • Lieber RL, Friden J. Functional and clinical significance of skeletal muscle architecture. Muscle Nerve. 2000;23:1647–66.
  • Stefanaki DGA, Dzulkarnain A, Gray SR. Comparing the effects of low and high load resistance exercise to failure on adaptive responses to resistance exercise in young women. J Sports Sci. 2019;37(12):1375-1380.
  • Santos R, Valamatos MJ, Mil-Homens P, Armada-da-Silva P. The Effect of Strength Training on Vastus Lateralis' Stiffness: An Ultrasound Quasi-Static Elastography Study. Int J Environ Res Public Health. 2020;17(12):4381.
  • Mannarino P, Matta TTD, Oliveira LF. An 8-week resistance training protocol is effective in adapting quadriceps but not patellar tendon shear modulus measured by Shear Wave Elastography. PLoS One. 2019;14(4):e0205782.
  • Uysal Ö, Delioğlu K, Firat T. The effects of hamstring training methods on muscle viscoelastic properties in healthy young individuals. Scand J Med Sci Sports. 2021;31(2):371-379.
  • Pickering Rodriguez EC, Watsford ML, Bower RG, Murphy AJ. The relationship between lower body stiffness and injury incidence in female netballers. Sports Biomech. 2017;16(3):361-373.
  • Albin SR, Koppenhaver SL, Bailey B, et al. The effect of manual therapy on gastrocnemius muscle stiffness in healthy individuals. Foot (Edinb). 2019;38:70-75.
  • Pruyn EC, Watsford M, Murphy A. The relationship between lower-body stiffness and dynamic performance. Appl Physiol Nutr Metab. 2014;39(10):1144-1150.
  • Kalkhoven JT, Watsford ML. The relationship between mechanical stiffness and athletic performance markers in sub-elite footballers. J Sports Sci. 2018;36(9):1022-1029.
  • de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV. Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J Physiol. 2007;583(Pt 3):1079-1091.
  • Seynnes OR, Maganaris CN, de Boer MD, di Prampero PE, Narici MV. Early structural adaptations to unloading in the human calf muscles. Acta Physiol (Oxf). 2008;193(3):265-274.
  • Lee SS, Spear S, Rymer WZ. Quantifying changes in material properties of stroke-impaired muscle. Clin Biomech (Bristol, Avon). 2015;30(3):269-275.
  • Jalal N, Gracies JM, Zidi M. Mechanical and microstructural changes of skeletal muscle following immobilization and/or stroke. Biomech Model Mechanobiol. 2020;19(1):61-80.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Selim Mahmut Günay 0000-0002-7550-5244

Nevin Atalay Güzel 0000-0003-0467-7310

Yayımlanma Tarihi 31 Ocak 2023
Gönderilme Tarihi 30 Nisan 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 3 Sayı: 1

Kaynak Göster

Vancouver Günay SM, Atalay Güzel N. İskelet Kaslarının Pasif Mekanik Özellikleri ve Egzersiz. TOGÜ Sağlık Bilimleri Dergisi. 2023;3(1):94-105.