Araştırma Makalesi
BibTex RIS Kaynak Göster

MİMARLIKTA ÖKSETİK ÇALIŞMALARININ YÖNELİMİNE DAİR BİR İNCELEME

Yıl 2025, Cilt: 15 Sayı: 1, 272 - 281
https://doi.org/10.7456/tojdac.1562791

Öz

Öksetik (auxetic) geometri veya malzemeler esnek ve uyarlanabilir şekilde deforme olarak başlangıç hallerine dönme eğilimine sahiptir. Negatif Poisson oranı olarak da tanımlanan bu özellik sayesinde, öksetik geometri ve malzemeler, gerildiklerinde her yönde genişlemekte ve sıkıştırıldığında her yönde büzülmektedir. Birçok sektörde karşımıza çıkan bu kavram değişken davranış kabiliyeti nedeniyle mimarlık alanındaki çalışmalarda da yer edinerek, tasarım ve üretim tabanlı çok sayıda araştırmaya konu olmuştur. Araştırmada, sözü edilen çalışmaların güncel araştırma alanlarını tespit etmek amacıyla yapılan bir literatür araştırmasının sonuçları tartışılmaktadır. Bu kapsamda Web of Science veri tabanından ‘auxetic’ anahtar kelimesi ile güncel çalışmalara odaklanabilmek amacıyla son 5 yılın makaleleri araştırılarak en çok atıf alan 50 yayın, belirlenen malzeme, üretim tekniği, örüntü, davranış ve ölçek parametreleri doğrultusunda irdelenmiştir. Analizin sonucunda veri yoğunluğunun çoktan aza örüntü, malzeme, davranış, üretim tekniği ve ölçek sıralamasında olduğu tespit edilmiştir. Bu durumda, biçim ile malzeme arayışlarının birbirini desteklediği ayrıca davranış çalışmalarıyla dış etkilere verilen kinetik tepkilerin yoğunlukta olduğu, güncel tasarım ve fabrikasyon yöntemleri ile araştırmalarda sıklıkla karşılaşıldığı ve ölçek çalışmalarına yoğunluk verilmesi gerektiği gözlemlenmiştir.

Kaynakça

  • Alderson, A., & Alderson, K. (2007). Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.
  • Baughman, R., Shacklette, J., Zakhidov, A., & Stafström, S. (1998). Negative Poisson's ratios as a common feature of cubic metals. Nature(392), 362-365.
  • Bettini, P., Airoldi, A., Sala, G., & Di-Landro, L. (2010). Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process. Composites Part B:Engineering.
  • Evans, K., Nkansah, M., Hutchinson, I., & Rogers, S. (1991). Molekular network design. Nature(353).
  • Grima, J. (2000). L-Università ta' Malta: https://staff.um.edu.mt/jgri1/auxetic/auxetic_f2.html adresinden alındı
  • Hine, P., Duckett, R., & Ward, I. (1997). Negative Poisson’s ratios in angle-ply laminates. Journal of Materials Science Letters, 541-544.
  • Liu, Y., & Hu, H. (2010). A Review on Auxetic Structures and Polymeric Materials. Scientific Research and Essays, 1052-1063.
  • Mazaev, A., Ajeneza, O., & Shitikova, M. (2020). Auxetics materials: classification, mechanical properties and applications. IOP Conference Series: Materials Science and Engineering.
  • Mirante, L. (2015). Auxetic Structures: Towards Bending-Active Architectural Applications. Master Thesis. Politecnico di Milano.
  • Naboni, R., & Mirante, L. (2015). Metamaterial computation and fabrication of auxetic patterns for architecture. SigraDi, (s. 129-136).
  • Öner, D., Ezel Çırpı, M., & Çakıcı Alp, N. (2020). Auxetik Davranış ile Mimari Tasarım Deneyimi. XIV. Mimarlıktaki Sayısal Tasarım Ulusal Sempozyumu. Trabzon.
  • Rad, M., Hatami, H., Ahmad, Z., & Yasuri, A. (2019). Analytical solution and finite element approach to the dense re-entrant unit cells of auxetic structures. Acta Mech.
  • Robertor, P., & Herder, J. (2024). A unified design method for 2D auxetic metamaterials based on a minimal auxetic structure. International Journal of Solids and Structures.
  • Sanami, M., Ravirala, N., Alderson, K., & Alderson, A. (2014). Auxetic materials for sports applications. 2014 Conference of the International Sports Engineering Association (s. 453-458). Procedia Engineering 72.
  • Spadoni, A., Ruzzene, M., & Scarpa, F. (2005). Global and local linear buckling behavior of a chiral cellular structure. Physica Status Solidi.
  • Yang , L., Harrysson, O., West, H., & Cormier, D. (2013). A Comparison of Bending Properties for Cellular Core Sandwich Panels. Materials Sciences and Applications.
  • Yu, X., Zhou, J., Liang, H., Jiang, Z., & Wu, L. (2018). Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science.

AN INVESTIGATION ON THE DIRECTIONS OF ARCHITECTURE AUXETIC STUDIES

Yıl 2025, Cilt: 15 Sayı: 1, 272 - 281
https://doi.org/10.7456/tojdac.1562791

Öz

Auxetic geometry or materials have the tendency to return to their initial state by deforming flexibly and adaptively. Thanks to this property, also defined as negative Poisson's ratio, auxetic geometries and materials expand in all directions when stretched and contract in all directions when compressed. This concept, which is encountered in many sectors, has been the subject of many design and production based researches in the field of architecture due to its variable behaviour capability. In this study, the results of a literature survey conducted to identify the current research areas of these studies are discussed. In this context, in order to focus on current studies with the keyword ‘auxetic’ from the Web of Science database, the articles of the last 5 years were searched and the 50 most cited publications were examined in line with the parameters of material, production technique, pattern, behaviour and scale. As a result of the analysis, it was determined that the data density is in the order of pattern, material, behaviour, production technique and scale. In this case, it has been observed that form and material searches support each other, behavioural studies and kinetic reactions to external effects are intense, current design and fabrication methods are frequently encountered in researches and scale studies should be intensified.

Kaynakça

  • Alderson, A., & Alderson, K. (2007). Auxetic materials. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering.
  • Baughman, R., Shacklette, J., Zakhidov, A., & Stafström, S. (1998). Negative Poisson's ratios as a common feature of cubic metals. Nature(392), 362-365.
  • Bettini, P., Airoldi, A., Sala, G., & Di-Landro, L. (2010). Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process. Composites Part B:Engineering.
  • Evans, K., Nkansah, M., Hutchinson, I., & Rogers, S. (1991). Molekular network design. Nature(353).
  • Grima, J. (2000). L-Università ta' Malta: https://staff.um.edu.mt/jgri1/auxetic/auxetic_f2.html adresinden alındı
  • Hine, P., Duckett, R., & Ward, I. (1997). Negative Poisson’s ratios in angle-ply laminates. Journal of Materials Science Letters, 541-544.
  • Liu, Y., & Hu, H. (2010). A Review on Auxetic Structures and Polymeric Materials. Scientific Research and Essays, 1052-1063.
  • Mazaev, A., Ajeneza, O., & Shitikova, M. (2020). Auxetics materials: classification, mechanical properties and applications. IOP Conference Series: Materials Science and Engineering.
  • Mirante, L. (2015). Auxetic Structures: Towards Bending-Active Architectural Applications. Master Thesis. Politecnico di Milano.
  • Naboni, R., & Mirante, L. (2015). Metamaterial computation and fabrication of auxetic patterns for architecture. SigraDi, (s. 129-136).
  • Öner, D., Ezel Çırpı, M., & Çakıcı Alp, N. (2020). Auxetik Davranış ile Mimari Tasarım Deneyimi. XIV. Mimarlıktaki Sayısal Tasarım Ulusal Sempozyumu. Trabzon.
  • Rad, M., Hatami, H., Ahmad, Z., & Yasuri, A. (2019). Analytical solution and finite element approach to the dense re-entrant unit cells of auxetic structures. Acta Mech.
  • Robertor, P., & Herder, J. (2024). A unified design method for 2D auxetic metamaterials based on a minimal auxetic structure. International Journal of Solids and Structures.
  • Sanami, M., Ravirala, N., Alderson, K., & Alderson, A. (2014). Auxetic materials for sports applications. 2014 Conference of the International Sports Engineering Association (s. 453-458). Procedia Engineering 72.
  • Spadoni, A., Ruzzene, M., & Scarpa, F. (2005). Global and local linear buckling behavior of a chiral cellular structure. Physica Status Solidi.
  • Yang , L., Harrysson, O., West, H., & Cormier, D. (2013). A Comparison of Bending Properties for Cellular Core Sandwich Panels. Materials Sciences and Applications.
  • Yu, X., Zhou, J., Liang, H., Jiang, Z., & Wu, L. (2018). Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mimari Tasarım, Mimarlık (Diğer)
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Gizem Karaoğlu Çitken 0000-0002-2228-9461

Asena Kumsal Şen Bayram 0000-0002-1131-6073

Erken Görünüm Tarihi 23 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 7 Ekim 2024
Kabul Tarihi 14 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Karaoğlu Çitken, G., & Şen Bayram, A. K. (2024). MİMARLIKTA ÖKSETİK ÇALIŞMALARININ YÖNELİMİNE DAİR BİR İNCELEME. Turkish Online Journal of Design Art and Communication, 15(1), 272-281. https://doi.org/10.7456/tojdac.1562791


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png