Araştırma Makalesi
BibTex RIS Kaynak Göster

Karaman İli Potansiyel Evapotranspirasyon Tahmini

Yıl 2019, Özel Sayı, 1 - 8, 24.12.2019
https://doi.org/10.21657/topraksu.654742

Öz

Dünyada tarım arazilerinin sulama planlamaları, terleme yoluyla bitki su tüketimleri ve buharlaşma
miktarlarını göz önünde bulunduran su bütçesi hesaplamalarıyla yapılmaktadır. Bitki kaplı alanlarda
meydana gelen söz konusu buharlaşma ve terleme olaylarının toplamı, hidrolojik çevrimin ölçülmesi
en zor bileşeni olan evapotranspirasyonu meydana getirmektedir. Evapotranspirasyonun, belli
referans bitki örtüleri, su alma ve büyüme koşulları varsayımlarındaki potansiyel değerleri, pek çok
araştırmacı tarafından geliştirilen ampirik yöntemler ile tahmin edilebilmektedir. Bunların en başında
gelen FAO56 Penman-Monteith (FAO56 PM), güçlü teorik alt yapısı ve tahminlerinin güvenilirliği
bakımından, tüm dünyada en yaygın olarak kullanılan referans potansiyel evapotranspirasyon (PET)
tahmin yöntemi haline gelmiştir. Güvenilir tahminlerine karşın, FAO56 PM’nin, PET tahminlerinde
çok fazla meteorolojik gözlem verisine ihtiyaç duyması ve karmaşık hesaplama adımları, daha az
gözlem verisi gerektiren tahmin yöntemlerini kullanmamızı zaruri kılabilmektedir. Bu çalışmada,
Konya Kapalı Havzası’nda yer alan ve önemli tarımsal faaliyetler gerçekleştiren Karaman ili potansiyel
evapotranspirasyon miktarları FAO56 PM ile günlük, Turc (TC), Makkink (MK), Priestley Taylor (PT),
Jensen Haise (JH), Hargreaves Samani (HS), Blaney Criddle (BC), Thornthwaite (TH) gibi FAO56 PM’ye
kıyasla daha az ölçülmüş veri ihtiyacı olan ve kullanımı nispeten daha basit yedi farklı ampirik yöntemle
ise aylık zaman adımlarında hesaplanmıştır. FAO56 PM günlük tahminlerinin toplanmasıyla elde edilen
aylık PET değerleri, diğer PET tahmin yöntemleriyle elde edilen aylık değerlerle karşılaştırılmıştır. Sonuç
olarak, çalışmaya dâhil edilen yedi PET tahmin yönteminden, FAO56 PM ile 0.97’lik en iyi uyum
(R2) ve 16.94 mm’lik ortalama hata karelerinin karekökü (RMSE) değerlerine sahip Turc, Karaman ili
özelinde önerilmiş ve geri kalan yöntemlerin uygulanabilirliği tartışılmıştır.

Kaynakça

  • Abdulkareem JH, Abdulkadir A, Abdu N (2015). A review of different types of lysimeter used in solute transport studies. International Journal of Plant & Soil Science, 8 (3): 1-14. Akpolat A (2011). Mikrometeorolojik ve lizimetre yöntemleriyle belirlenen buğday bitki su tüketimlerinin karşılaştırılması. Yüksek lisans tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana. Aksu H, Arıkan A (2017). Satellite-based estimation of actual evapotranspiration in the Buyuk Menderes Basin, Turkey. Hydrology Research, 48(2): 559-570. Alexandris S, Stricevic R, Petkovic S (2008). Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman – Monteith formula. European Water, 21/22: 17-28. Allen RG, Periera LS, Raes D, Smith M (1998). Crop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper 56, p. 300. Blaney HF, Criddle WD (1950). Determining water requirements in irrigated areas from climatological irrigation data. Technical Paper No. 96, US Department of Agriculture, Soil Conservation Service, Washington, D.C., p. 48. Dingman SL (2008). Physical hydrology. Waveland Press, Inc., United States of America, p. 646. Efthimiou N, Alexandris S, Karavitis C, Mamassis N (2013). Comparative analysis of reference evapotranspiration estimation between various methods and the FAO56 Penman-Monteith procedure. European Water, 42: 19-34. FAO (Irrigation Water Manegement: Irrigation water needs, Chapter 3: Crop water needs). Available: http:// www.fao.org/docrep/s2022e/s2022e07.htm. Fisher DK, Pringle III HC (2013). Evaluation of alternative methods for estimating reference evapotranspiration. Agricultural Sciences, 4(8A): 51-60. Grismer ME, Orang M, Snyder R, Matyac R (2002). Pan evaporation to reference evapotranspiration conversion methods. Journal of Irrigation and Drainage Engineering, 128(3): 180-184. Hamon WR (1961). Estimating potential evapotranspiration. Journal of Hydraulics Division-ASCE, 87(HY3): 107-120. Jensen ME, Haise HR (1963). Estimating evapotranspiration from solar radiation. Journal of the Irrigation and Drainage Division-ASCE, 89(IR3):15-41. Hargreaves GH (1975). Moisture availability and crop production. TRANSACTION of the ASAE: 18, 980-984. Hargreaves GH, Samani ZA (1982). Estimation of potential evapotranspiration. Journal of the Irrigation and Drainage Division-ASCE, 108: 223-230. Hargreaves GH., Samani ZA (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2): 96-99. ingling Z, Jun X, Chong-Yu X, Zhonggen W, Leszek S (2013). Evapotranspiration estimation methods in hydrological models. Journal of Geographical Sciences, 23 (2): 359-369. Lu J, Sun G, Mcnulty SG, Amatya DM (2005). A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association, 41(3): 621-633. Makkink GF (1957). Testing the Penman formula by means of lysimeters. Journal Institute of Water Engineering, 11(3): 277-288. Priestley CHB, Taylor RJ (1972). On the assessment of the surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100: 81-92. Tabari H (2010). Evaluation of reference crop evapotranspiration equations in various climates. Water Resources Management, 24: 2311-2337. Tukimat NNA, Harun S, Shadid S (2012). Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 113(1): 77-85. Thornthwaite CW (1948). An approach toward a rational classification of climate. Geographical Review, 38: 55-94. Tuomenvirta H (2001). Homogeneity adjustments of temperature and precipitation series- Finnish and Nordic data. International Journal of Climatology, 21: 495-506. Turc L (1961). Water requirements assessment of irrigation, potential evapotranspiration: simplified and updated climatic formula. Annales Agronomiques, 12: 13-49. Xu CY, Singh VP (2000). Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrological Processes, 14: 339-349. Zhai L, Feng Q, Li Q, Xu C (2010). Comparison and modification of equations for calculating evapotranspiration (ET) with data from Gansu Province, Northwest China. Irrigation and Drainage, 59 (4): 477-490. Zhang K, Kimball JS, Nemani RR, Running SW (2010). A continuous satellite‐derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research, 46, W09522.

Estimation of Potential Evapotranspiration in the Karaman Province

Yıl 2019, Özel Sayı, 1 - 8, 24.12.2019
https://doi.org/10.21657/topraksu.654742

Öz

Irrigation scheduling is performed with the water budget calculations considering the plant
water consumption by transpiration and evaporation, at the farmlands around the world. Sum of
these transpiration and evaporation events which takes place at the plant covered areas, composes
evapotranspiration which is the hardest components of the hydrological cycle to measure. The potential
values of evapotranspiration, under assumptions as certain reference plant cover, watering and growing
conditions, can be estimated with empirical methods developed by many researches. At the top of
them, FAO56 Penman-Monteith (FAO56 PM) is widely used reference potential evapotranspiration

estimation (PET) method worldwide through its strong theoretical background and reliability of
estimation.Despite of its reliable estimation, complicated calculation steps and requirement of various
observed meteorological data impel us to use more practical PET estimation methods which require
more easily findable meteorological data. In this study, the potential amounts of evapotranspiration,
occuring in the Karaman province located in the Konya Closed Basin where advanced agricultural
activities are carried out, were calculated by FAO56 PM method with daily time steps and by Turc
(TC), Makkink (MK), Priestley Taylor (PT), Jensen Haise (JH), Hargreaves Samani (HS), Blaney Criddle
(BC), Thornthwaite (TH) methods with monthly time steps. The monthly PET values were obtained by
summing of daily estimations of FAO56 PM and then compared with the monthly PET values estimated
by other empirical methods. As a conclusion, among seven PET estimation methods, Turc yielded
most compatible results in comparison with FAO56 PM by 0.97 correlation coefficient value (R2) and
16.97 mm (monthly) root mean square error (RMSE) value. Turc was recommended with convenient
calibration and remained methods were discussed.

Kaynakça

  • Abdulkareem JH, Abdulkadir A, Abdu N (2015). A review of different types of lysimeter used in solute transport studies. International Journal of Plant & Soil Science, 8 (3): 1-14. Akpolat A (2011). Mikrometeorolojik ve lizimetre yöntemleriyle belirlenen buğday bitki su tüketimlerinin karşılaştırılması. Yüksek lisans tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana. Aksu H, Arıkan A (2017). Satellite-based estimation of actual evapotranspiration in the Buyuk Menderes Basin, Turkey. Hydrology Research, 48(2): 559-570. Alexandris S, Stricevic R, Petkovic S (2008). Comparative analysis of reference evapotranspiration from the surface of rainfed grass in central Serbia, calculated by six empirical methods against the Penman – Monteith formula. European Water, 21/22: 17-28. Allen RG, Periera LS, Raes D, Smith M (1998). Crop evapotranspiration: guideline for computing crop water requirement. FAO Irrigation and Drainage Paper 56, p. 300. Blaney HF, Criddle WD (1950). Determining water requirements in irrigated areas from climatological irrigation data. Technical Paper No. 96, US Department of Agriculture, Soil Conservation Service, Washington, D.C., p. 48. Dingman SL (2008). Physical hydrology. Waveland Press, Inc., United States of America, p. 646. Efthimiou N, Alexandris S, Karavitis C, Mamassis N (2013). Comparative analysis of reference evapotranspiration estimation between various methods and the FAO56 Penman-Monteith procedure. European Water, 42: 19-34. FAO (Irrigation Water Manegement: Irrigation water needs, Chapter 3: Crop water needs). Available: http:// www.fao.org/docrep/s2022e/s2022e07.htm. Fisher DK, Pringle III HC (2013). Evaluation of alternative methods for estimating reference evapotranspiration. Agricultural Sciences, 4(8A): 51-60. Grismer ME, Orang M, Snyder R, Matyac R (2002). Pan evaporation to reference evapotranspiration conversion methods. Journal of Irrigation and Drainage Engineering, 128(3): 180-184. Hamon WR (1961). Estimating potential evapotranspiration. Journal of Hydraulics Division-ASCE, 87(HY3): 107-120. Jensen ME, Haise HR (1963). Estimating evapotranspiration from solar radiation. Journal of the Irrigation and Drainage Division-ASCE, 89(IR3):15-41. Hargreaves GH (1975). Moisture availability and crop production. TRANSACTION of the ASAE: 18, 980-984. Hargreaves GH, Samani ZA (1982). Estimation of potential evapotranspiration. Journal of the Irrigation and Drainage Division-ASCE, 108: 223-230. Hargreaves GH., Samani ZA (1985). Reference Crop Evapotranspiration from Temperature. Applied Engineering in Agriculture, 1(2): 96-99. ingling Z, Jun X, Chong-Yu X, Zhonggen W, Leszek S (2013). Evapotranspiration estimation methods in hydrological models. Journal of Geographical Sciences, 23 (2): 359-369. Lu J, Sun G, Mcnulty SG, Amatya DM (2005). A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. Journal of the American Water Resources Association, 41(3): 621-633. Makkink GF (1957). Testing the Penman formula by means of lysimeters. Journal Institute of Water Engineering, 11(3): 277-288. Priestley CHB, Taylor RJ (1972). On the assessment of the surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100: 81-92. Tabari H (2010). Evaluation of reference crop evapotranspiration equations in various climates. Water Resources Management, 24: 2311-2337. Tukimat NNA, Harun S, Shadid S (2012). Comparison of different methods in estimating potential evapotranspiration at Muda Irrigation Scheme of Malaysia. Journal of Agriculture and Rural Development in the Tropics and Subtropics, 113(1): 77-85. Thornthwaite CW (1948). An approach toward a rational classification of climate. Geographical Review, 38: 55-94. Tuomenvirta H (2001). Homogeneity adjustments of temperature and precipitation series- Finnish and Nordic data. International Journal of Climatology, 21: 495-506. Turc L (1961). Water requirements assessment of irrigation, potential evapotranspiration: simplified and updated climatic formula. Annales Agronomiques, 12: 13-49. Xu CY, Singh VP (2000). Evaluation and generalization of radiation-based methods for calculating evaporation. Hydrological Processes, 14: 339-349. Zhai L, Feng Q, Li Q, Xu C (2010). Comparison and modification of equations for calculating evapotranspiration (ET) with data from Gansu Province, Northwest China. Irrigation and Drainage, 59 (4): 477-490. Zhang K, Kimball JS, Nemani RR, Running SW (2010). A continuous satellite‐derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research, 46, W09522.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Soner Çağatay Bağçacı Bu kişi benim 0000-0002-2673-0234

Nermin Şarlak Bu kişi benim 0000-0003-3632-2725

Yayımlanma Tarihi 24 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Özel Sayı

Kaynak Göster

APA Bağçacı, S. Ç., & Şarlak, N. (2019). Karaman İli Potansiyel Evapotranspirasyon Tahmini. Toprak Su Dergisi1-8. https://doi.org/10.21657/topraksu.654742
AMA Bağçacı SÇ, Şarlak N. Karaman İli Potansiyel Evapotranspirasyon Tahmini. TSD. Published online 01 Aralık 2019:1-8. doi:10.21657/topraksu.654742
Chicago Bağçacı, Soner Çağatay, ve Nermin Şarlak. “Karaman İli Potansiyel Evapotranspirasyon Tahmini”. Toprak Su Dergisi, Aralık (Aralık 2019), 1-8. https://doi.org/10.21657/topraksu.654742.
EndNote Bağçacı SÇ, Şarlak N (01 Aralık 2019) Karaman İli Potansiyel Evapotranspirasyon Tahmini. Toprak Su Dergisi 1–8.
IEEE S. Ç. Bağçacı ve N. Şarlak, “Karaman İli Potansiyel Evapotranspirasyon Tahmini”, TSD, ss. 1–8, Aralık 2019, doi: 10.21657/topraksu.654742.
ISNAD Bağçacı, Soner Çağatay - Şarlak, Nermin. “Karaman İli Potansiyel Evapotranspirasyon Tahmini”. Toprak Su Dergisi. Aralık 2019. 1-8. https://doi.org/10.21657/topraksu.654742.
JAMA Bağçacı SÇ, Şarlak N. Karaman İli Potansiyel Evapotranspirasyon Tahmini. TSD. 2019;:1–8.
MLA Bağçacı, Soner Çağatay ve Nermin Şarlak. “Karaman İli Potansiyel Evapotranspirasyon Tahmini”. Toprak Su Dergisi, 2019, ss. 1-8, doi:10.21657/topraksu.654742.
Vancouver Bağçacı SÇ, Şarlak N. Karaman İli Potansiyel Evapotranspirasyon Tahmini. TSD. 2019:1-8.
Kapak Tasarım : Hüseyin Oğuzhan BEŞEN
Grafik Tasarım : Filiz ERYILMAZ
Basım Yeri : Gıda Tarım ve Hayvancılık Bakanlığı - Eğitim Yayım ve Yayınlar Dairesi Başkanlığı
İvedik Caddesi Bankacılar Sokak No : 10 Yenimahalle, Ankara Türkiye