Yıl 2010,
, 19 - 23, 01.12.2010
Aytuğ Atıcı
Öz
Malpractice has gained an alarming dimension especially along with the introduction of compulsory professional liability insurance On the other hand it is quite difficult to say that malpractice is discussed by considering all responsible determinants According to individual focused approach the error is caused by single individual so the solution can be achieved by punishing the individual It is known that this approach does not reduce errors and adversely affect services due to high compensations and increased insurance premiums In Turkey malpractice is simply considered in the customer seller relationship context and individual focused approach is adopted However it is well established that this ldquo;blame culture rdquo; has negative effects on service provided social perception of the profession and job satisfaction Beside recognizing individual professional responsibilities basically it should be stressed that declaring healthcare workers as mainly responsible would not be fair In addition it violates right to health because of increasing the preventable errors and harms Turk Arch Ped 2011; 46: 6 11
Kaynakça
- Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic–ischemic injury in the developing brain. Pediatr Res 2001; 49: 735-41.
- Verklan MT. The chilling details: hypoxic-ischemic encephalopathy. J Perinat Neonat Nur 2009; 23: 59-68.
- Ferriero DM. Neonatal brain injury. New Engl J Med 2004; 351: 1985-95.
- Volpe J. Perinatal brain injury: from pathogenesis to neuro- protection. Ment Retard Dev D R 2001; 7: 56-64.
- Johnston M. Excitotoxicity in perinatal brain injury. Brain Pathol 2005; 15: 234-40.
- Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: Two distinct events induced, respec- tively, by mild and intense insults with N-methyI-D-aspartate or nitric oxide/superoxide in cortical cell cultures. P Natl Acad Sci USA 1995; 92: 7162-6.
- Perlman JM. Intervention strategies for neonatal hypoxic- ischemic cerebral injury. Clin Ther 2006; 28: 1353-65.
- Grow J, Barks JD. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: Current concepts. Clin Perinatol 2002; 29: 585-602.
- Akisu M, Kultursay N, Coker I, Huseynov A. Platelet-activating factor is an important mediator in hypoxic ischemic brain injury in the newborn rat: flunarizine and Ginkgo biloba extract reduce PAF concentration in the brain. Biol Neonate 1998; 74: 439-44.
- Mori M, Aihara M, Kume K, Hamanoue M, Kohsaka S, Shimizu T. Predominant expression of platelet-activating factor recep- tor in the rat brain microglia. J Neurosci 1996; 16: 3590-600.
- Predescu D, Ihida K, Predescu S, Palade GE. The vascular distribution of the platelet-activating factor receptor. Eur J Cell Biol 1996; 69: 86-98.
- Renis M, Cardile V, Russo A, Campisi A, Collova F. Glutamine synthetase activity and HSP70 levels in cultured rat astro- cytes: effect of 1-octadecyl-2-methyl-rac-glycero-3-phospho- choline. Brain Res 1998; 783: 143-50.
- Yoshida H, Imaizumi T, Tanji K, et al. Platelet-activating factor enhances the expression of vascular endothelial growth factor in normal human astrocytes. Brain Res 2002; 944: 65-72.
- Viswanath M, Palmer C, Roberts RL. Reduction of hypoxic–ischemic brain swelling in the neonatal rat with PAF antagonist WEB 2170: lack of long-term protection. Pediatr Res 2000; 48: 109-13.
- Liu XH, Eun BL, Barks JDE. Platelet-activating factor antago- nist BN 50730 attenuates hypoxic–ischemic brain injury in neonatal rats. Pediatr Res 2001; 49: 804-11.
- Albert DH, Magoc TJ, Tapang P, et al. Pharmacology of ABT- 491, a highly potent platelet-activating factor receptor antago- nist. Eur J Pharmacol 1997; 325: 69-80.
- Bozlu G, Atici A, Turhan AH, et al. Platelet-activating factor antagonist (ABT-491) decreases neuronal apoptosis in neona- tal rat model of hypoxic ischemic brain injury. Brain Res 2007; 1143: 193-8.
- Lopes Da Silva FH. Event-related potentials: methodology and quantification. In: Niedermeyer E, Lopes da Silva FH (eds). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5th ed. Baltimore: Williams & Wilkins, 2005: 991-1001.
- Fahle M, Bach M. Origin of the visual evoked potentials. In: Heckenlively JR, Arden GB (eds). Principles and Practice of Clinical Electrophysiology of Vision. 2nd Ed. London: The MIT Press, 2006: 207-34.
- Rice JE, Vanucci RC, Brierley JB. The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol 1981; 9: 131-41.
- Paxinos G, Watson C, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Meth 1980; 3: 129-49.
- Odom JV, Bach M, Brigell M, et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 2010; 120: 111-9.
- Hossain MA. Molecular mediators of hypoxic–ischemic injury and implications for epilepsy in the developing brain. Epilepsy Behav 2005; 7: 204-13.
- Atici A, Bozlu G, Turhan AH, et al. The role of trapidil on neu- ronal apoptosis in neonatal rat model of hypoxic ischemic brain injury. Early Hum Dev 2008; 84: 243-7.
- Ogden F, DeCoster MA, Bazan NG. Recombinant plasma-type platelet-activating factor acetylhyrolase attenuates NMDA- induced hippocampal neuronal apoptosis. J Neurosci Res 1998; 53: 677-84.
- Hoyt CS. Visual function in the brain-damaged child. Eye 2003; 17: 369-84.
- Diem R, Tschirne A, Bahr M. Decreased amplitudes in multiple sclerosis patients with normal visual acuity: a VEP study. J Clin Neurosci 2003; 10: 67-70.
- Trip SA, Schlottmann PG, Jones SJ, et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005; 58: 383-91.
Hipoksik iskemik beyin hasarı oluşturulan yenidoğan sıçanlarda ABT 491 uygulamasının görsel uyarılma potansiyelleri üzerine etkileri Özgün Araştırma
Yıl 2010,
, 19 - 23, 01.12.2010
Aytuğ Atıcı
Öz
Özet Amaç: Bu çalışmada hipoksik iskemik beyin hasarı HİBH oluşturulan sıçanlara ABT 491 uygulanmasının görsel uyarılma potansiyelleri GUP üzerine olan etkilerinin araştırılması amaçlandı Gereç ve Yöntem: Çalışmada 57 tane Wistar cinsi yenidoğan erkek sıçan kullanıldı Sıçanlar rastgele olarak üç gruba ayrıldıktan sonra 1 n=18 ve 2 grupta n=20 doğum sonrası yedinci günde değiştirilmiş Levine Rice örneğine göre HİBH oluşturuldu Üçüncü grup n=19 sham grubu olarak ayrıldı Hipoksik iskemik beyin hasarı sonrasında 1 gruptaki sıçanlara periton içine ABT 491 2 gruptakilere ise serum fizyolojik SF uygulandı Sıçanlar 16 haftalık olduklarında oksipital bölgeye yerleştirilen Ag AgCl disk elektrot aracılığıyla GUP rsquo;ları kaydedildi Bulgular: ABT grubunda P3 dalga süreleri SF grubuna göre daha kısa bulundu p lt;0 05 Sham grubu ile karşılaştırıldığında ABT ve SF gruplarında tepeden tepeye P2 N2 ve N2 P3 dalga genlikleri daha küçüktü tüm ikili karşılaştırmalar için p lt;0 001 Çıkarımlar: Hipoksik iskemik beyin hasarının GUP yanıtlarının genliklerinde azalmaya neden olduğu ve bu azalmanın ABT 491 ile düzeltilemediği; buna karşılık HİBH sonrası ABT 491 uygulamasının P3 dalga sürelerindeki kısalmayı düzelttiği söylenebilir Türk Ped Arş 2010; 45: 319 23 Anahtar sözcükler: ABT 491 apopitoz hipoksik iskemik beyin hasarı görsel uyarılma potansiyeli PAF
Kaynakça
- Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic–ischemic injury in the developing brain. Pediatr Res 2001; 49: 735-41.
- Verklan MT. The chilling details: hypoxic-ischemic encephalopathy. J Perinat Neonat Nur 2009; 23: 59-68.
- Ferriero DM. Neonatal brain injury. New Engl J Med 2004; 351: 1985-95.
- Volpe J. Perinatal brain injury: from pathogenesis to neuro- protection. Ment Retard Dev D R 2001; 7: 56-64.
- Johnston M. Excitotoxicity in perinatal brain injury. Brain Pathol 2005; 15: 234-40.
- Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis: Two distinct events induced, respec- tively, by mild and intense insults with N-methyI-D-aspartate or nitric oxide/superoxide in cortical cell cultures. P Natl Acad Sci USA 1995; 92: 7162-6.
- Perlman JM. Intervention strategies for neonatal hypoxic- ischemic cerebral injury. Clin Ther 2006; 28: 1353-65.
- Grow J, Barks JD. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: Current concepts. Clin Perinatol 2002; 29: 585-602.
- Akisu M, Kultursay N, Coker I, Huseynov A. Platelet-activating factor is an important mediator in hypoxic ischemic brain injury in the newborn rat: flunarizine and Ginkgo biloba extract reduce PAF concentration in the brain. Biol Neonate 1998; 74: 439-44.
- Mori M, Aihara M, Kume K, Hamanoue M, Kohsaka S, Shimizu T. Predominant expression of platelet-activating factor recep- tor in the rat brain microglia. J Neurosci 1996; 16: 3590-600.
- Predescu D, Ihida K, Predescu S, Palade GE. The vascular distribution of the platelet-activating factor receptor. Eur J Cell Biol 1996; 69: 86-98.
- Renis M, Cardile V, Russo A, Campisi A, Collova F. Glutamine synthetase activity and HSP70 levels in cultured rat astro- cytes: effect of 1-octadecyl-2-methyl-rac-glycero-3-phospho- choline. Brain Res 1998; 783: 143-50.
- Yoshida H, Imaizumi T, Tanji K, et al. Platelet-activating factor enhances the expression of vascular endothelial growth factor in normal human astrocytes. Brain Res 2002; 944: 65-72.
- Viswanath M, Palmer C, Roberts RL. Reduction of hypoxic–ischemic brain swelling in the neonatal rat with PAF antagonist WEB 2170: lack of long-term protection. Pediatr Res 2000; 48: 109-13.
- Liu XH, Eun BL, Barks JDE. Platelet-activating factor antago- nist BN 50730 attenuates hypoxic–ischemic brain injury in neonatal rats. Pediatr Res 2001; 49: 804-11.
- Albert DH, Magoc TJ, Tapang P, et al. Pharmacology of ABT- 491, a highly potent platelet-activating factor receptor antago- nist. Eur J Pharmacol 1997; 325: 69-80.
- Bozlu G, Atici A, Turhan AH, et al. Platelet-activating factor antagonist (ABT-491) decreases neuronal apoptosis in neona- tal rat model of hypoxic ischemic brain injury. Brain Res 2007; 1143: 193-8.
- Lopes Da Silva FH. Event-related potentials: methodology and quantification. In: Niedermeyer E, Lopes da Silva FH (eds). Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 5th ed. Baltimore: Williams & Wilkins, 2005: 991-1001.
- Fahle M, Bach M. Origin of the visual evoked potentials. In: Heckenlively JR, Arden GB (eds). Principles and Practice of Clinical Electrophysiology of Vision. 2nd Ed. London: The MIT Press, 2006: 207-34.
- Rice JE, Vanucci RC, Brierley JB. The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann Neurol 1981; 9: 131-41.
- Paxinos G, Watson C, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Meth 1980; 3: 129-49.
- Odom JV, Bach M, Brigell M, et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 2010; 120: 111-9.
- Hossain MA. Molecular mediators of hypoxic–ischemic injury and implications for epilepsy in the developing brain. Epilepsy Behav 2005; 7: 204-13.
- Atici A, Bozlu G, Turhan AH, et al. The role of trapidil on neu- ronal apoptosis in neonatal rat model of hypoxic ischemic brain injury. Early Hum Dev 2008; 84: 243-7.
- Ogden F, DeCoster MA, Bazan NG. Recombinant plasma-type platelet-activating factor acetylhyrolase attenuates NMDA- induced hippocampal neuronal apoptosis. J Neurosci Res 1998; 53: 677-84.
- Hoyt CS. Visual function in the brain-damaged child. Eye 2003; 17: 369-84.
- Diem R, Tschirne A, Bahr M. Decreased amplitudes in multiple sclerosis patients with normal visual acuity: a VEP study. J Clin Neurosci 2003; 10: 67-70.
- Trip SA, Schlottmann PG, Jones SJ, et al. Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005; 58: 383-91.