BibTex RIS Kaynak Göster

LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ

Yıl 2005, Cilt: 6 Sayı: 1, 107 - 111, 05.08.2016

Öz

Bu makalede, lineer olmayan adi diferansiyel denklemlerin çözümü için kuvvet serisini kullandık. Nümerik yoldan elde edilen sonuçlarla, teorik yoldan elde edilen sonuçlar karşılaştırıldı ve lineer olmayan differansiyel denklem sistemlerinde metodun etkinliğini göstermek için örnekler verildi. Nümerik hesap-lamalarda MAPLE bilgisayar cebiri sistemleri kullanıldı (FRANK, 1996).

Kaynakça

  • AMODIO P, MAZZIA F, Numerical solution of differential-algebraic equations and Computation of consistent ini- tial/boundary conditions. Journal of Computational and Applied Mathematics. 87, 135-146,1997.
  • ASCHER U.M., PETZOLD L.R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia: society for industrial and Applied Mathematics, 1998.
  • BRENAN K E, CAMPBELL S L, PETZOLD LR, Numerical solution of Initial-value problems in Differential- Algebraic Equations, North-Holland, Amsterdam, 1989.
  • CORLISS G, CHANG Y F, Solving Ordinary Differential Equations Using Taylor Series, ACM Trans. Math. Soft. 8, 114-144,1982.
  • ÇELIK E, KARADUMAN E, BAYRAM M, Numerical Method to Solve Chemical Differential-Algebraic Equations. International Journal of Quantum Chemistry, 89(5), 447-451, 2002.
  • ÇELIK E, BAYRAM M, Arbitrary Order Numerical Method for Solving Differetial-Algebraic Equation by Pade Se- ries. Applied Mathematics and Computation,137,57-65, 2003.
  • FRANK G, MAPLE V:CRC Press Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431, 1996.
  • HAIRER E, WANNER G, Solving Ordinary Differential Equations II: Stiff and Differential-Algebreis Problems, Springer-Verlag, 1991.
  • HENRICI P, Applied Computational Complex Analysis, Vol.1, Chap.1, John Wiely&Sons, New York, 1974.
  • HULL TE, ENRIGHT WH, FELLEN BM, SEDGWICK AE, Comparing numerical methods for ordinary differential equations, SIAM J, Numerical Anal. 9,603,1972.
  • PRESS WH, FLANNERY BP, TEUKOLSKY SA,VETTERLING WT, Numerical Recipes, Cambridge University Press, Cambridge, 1988.

POWER SERIES SOLUTION OF NON-LINEAR FIRST ORDER DIFFERENTIAL EQUATION SYSTEMS

Yıl 2005, Cilt: 6 Sayı: 1, 107 - 111, 05.08.2016

Öz

In this paper, we use power series method to solve non-linear ordinary differential equations Theoretical considerations has been discussed and some examples were presented to show the ability of the method for non-linear systems of differential equations. We use MAPLE computer algebra systems for numerical calculations (FRANK, 1996).

Kaynakça

  • AMODIO P, MAZZIA F, Numerical solution of differential-algebraic equations and Computation of consistent ini- tial/boundary conditions. Journal of Computational and Applied Mathematics. 87, 135-146,1997.
  • ASCHER U.M., PETZOLD L.R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Philadelphia: society for industrial and Applied Mathematics, 1998.
  • BRENAN K E, CAMPBELL S L, PETZOLD LR, Numerical solution of Initial-value problems in Differential- Algebraic Equations, North-Holland, Amsterdam, 1989.
  • CORLISS G, CHANG Y F, Solving Ordinary Differential Equations Using Taylor Series, ACM Trans. Math. Soft. 8, 114-144,1982.
  • ÇELIK E, KARADUMAN E, BAYRAM M, Numerical Method to Solve Chemical Differential-Algebraic Equations. International Journal of Quantum Chemistry, 89(5), 447-451, 2002.
  • ÇELIK E, BAYRAM M, Arbitrary Order Numerical Method for Solving Differetial-Algebraic Equation by Pade Se- ries. Applied Mathematics and Computation,137,57-65, 2003.
  • FRANK G, MAPLE V:CRC Press Inc., 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431, 1996.
  • HAIRER E, WANNER G, Solving Ordinary Differential Equations II: Stiff and Differential-Algebreis Problems, Springer-Verlag, 1991.
  • HENRICI P, Applied Computational Complex Analysis, Vol.1, Chap.1, John Wiely&Sons, New York, 1974.
  • HULL TE, ENRIGHT WH, FELLEN BM, SEDGWICK AE, Comparing numerical methods for ordinary differential equations, SIAM J, Numerical Anal. 9,603,1972.
  • PRESS WH, FLANNERY BP, TEUKOLSKY SA,VETTERLING WT, Numerical Recipes, Cambridge University Press, Cambridge, 1988.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA55RE25FD
Bölüm Makaleler
Yazarlar

Nuran Güzel Bu kişi benim

Mustafa Bayram Bu kişi benim

Yayımlanma Tarihi 5 Ağustos 2016
Yayımlandığı Sayı Yıl 2005 Cilt: 6 Sayı: 1

Kaynak Göster

APA Güzel, N., & Bayram, M. (2016). LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ. Trakya Üniversitesi Fen Bilimleri Dergisi, 6(1), 107-111.
AMA Güzel N, Bayram M. LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ. Trakya Univ J Sci. Ağustos 2016;6(1):107-111.
Chicago Güzel, Nuran, ve Mustafa Bayram. “LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ”. Trakya Üniversitesi Fen Bilimleri Dergisi 6, sy. 1 (Ağustos 2016): 107-11.
EndNote Güzel N, Bayram M (01 Ağustos 2016) LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ. Trakya Üniversitesi Fen Bilimleri Dergisi 6 1 107–111.
IEEE N. Güzel ve M. Bayram, “LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ”, Trakya Univ J Sci, c. 6, sy. 1, ss. 107–111, 2016.
ISNAD Güzel, Nuran - Bayram, Mustafa. “LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ”. Trakya Üniversitesi Fen Bilimleri Dergisi 6/1 (Ağustos 2016), 107-111.
JAMA Güzel N, Bayram M. LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ. Trakya Univ J Sci. 2016;6:107–111.
MLA Güzel, Nuran ve Mustafa Bayram. “LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ”. Trakya Üniversitesi Fen Bilimleri Dergisi, c. 6, sy. 1, 2016, ss. 107-11.
Vancouver Güzel N, Bayram M. LİNEER OLMAYAN BİRİNCİ MERTEBEDEN DİFFERENTİAL DENKLEM SİSTEMLERİNİN KUVVET SERİSİYLE ÇÖZÜMÜ. Trakya Univ J Sci. 2016;6(1):107-11.