BibTex RIS Kaynak Göster

ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ

Yıl 2009, Cilt: 10 Sayı: 2, 149 - 157, 05.08.2016

Öz

İnsanın parçası olduğu doğayı ve bir üst ölçekte evreni anlama isteği ve merakı, bu anlamanın bir ara yüzü olarak bir yanda matematik, fizik, kimya gibi temel bilimlerin ve bilgilerin ve sonrasında da pek çok farklı disiplinin ortaya çıkmasını sağlarken, diğer yanda sanat ve felsefede de önemli tartışmaları gündeme getirerek, anlama eyleminin de yeni araç ve ara yüzleri için farklı düzlemleri oluşturmaktadır. Tüm bu süreçte farklı bilgilerin ve olguların sembolik ama herkes tarafından anlaşılabilen bir anlatım biçimi olan matematik farklı bilgi alanlarının birbiri ile “konuşmasını” değil, anlama eyleminin model ve araçlarını da sağlamıştır. Bu bağlamda, insanoğlunun doğadaki büyüme modelini ve doğal yapılaşmalardaki tasarım estetiğini anlamakta kullandığı, esinlendiği/ öğrendiği/ uyguladığı parametrelerden en eskisi olan altın oran özellikle sanat ve mimarlıkta matematiğin rolünü gösteren ve izini tarih boyunca pek çok yapıtta görebileceğimiz bir benzeşim ölçütü olmuştur. Yapılan çalışmalar sonucu, Fi dizininin doğadaki formların gelişiminin (morphogenesis) açıklanması kadar; mimarlık tarihine baktığımızda, mimarlıktaki estetik ve yapısal formların da gelişmesinin açıklanabilmesine yardımcı olduğu görülmüştür. Bu çalışma, “altın oranın, ? (Fi)”, doğada ve mimarlıkta nasıl sistematik olarak kodlandığını (? dizini) örneklendirmektedir. Ayrıca bu oranın kabuk gibi bazı yapıların strüktür sisteminde de karşımıza çıkması, ? dizininin yapı davranışının eniyilenmesi konusunda da bir araç olabileceği tartışmasını gündeme getirmektedir.

Kaynakça

  • BERGİL, M., (1993), Doğada/Bilimde/Sanatta, Altın Oran, Arkeoloji ve Sanat Yayınları, 155.
  • BORGES, R. F., (2004) The Phi Code in Nature, Architecture and Engineering, Design and Nature-2 Conference, ed:
  • Brebbia, C. A., WIT Pres, 401-409
  • BOUSSORA, K., MAZOUZ, S., (2004) The Use of the Golden Section in the Great Mosque at Kairouan, Nexus
  • Network Journal, vol.6, no.1, 7-16
  • CHOWN, M,. (2002), Why Should Nature Have a Favorite Number, NewScientist, 21/28, 55-56.
  • COOK, T. A., (1979), The Curves of Life, Being an Account of Spiral Formations and Their Application to Growth in Nature, to Science and to Art. Dover, New York.
  • DOCZI, G., 1994, The Power of Limits : Proportional Harmonies in Nature, Art, and Architecture, Shambhala Publications,
  • DUNLAP, A,. 2003, The Golden Ratio and Fibonacci Numbers World Scientific Press.
  • FLETCHER, R., (2001), Palladio’s Villa Emo: The Golden Proportion Hypothesis Defended, Nexus Network Journal vol.3, no.2, 105-112.
  • FRINGS, M., (2007), The Golden Section in Architectural Theory, Nexus Network Journal vol. 4 no. 1, pp. 9-32. http://www.emis.de/journals/NNJ/Frings.html
  • GHYKA, M., (1977), The Geometry of Art and Life Dover Publications, New York.
  • HEMENWAY, P., (2005), Divine Proportion: Phi in Art, Nature, and Science. Sterling Publishing, New York, 20– , 127–129.
  • HUNTLEY H. E., (1970), The Divine Proportion, Dover Publications.
  • JEAN, R. V., (1994), Phyllotaxis: A Systematic Study in Plant Morphogenesis. New York: Cambridge University Press.
  • LAWLOR, R., (2002), Sacred Geometry: Philosophy and Practice, Thames and Hudson, London, 53-60.
  • LIVIO, M., (2002), The Golden Ratio: The Story of Phi, The World's Most Astonishing Number. New York: Broadway Books.
  • MAINZER, K., (1996), Symmetries of Nature: A Handbook for Philosophy of Nature and Science, Walter de Gruyter,199–200.
  • STERNE C., (2008), Blueprints of the Cosmos http://www.world-mysteries.com/newgw/sci_blueprint1.htm
  • MARK, L., (1991), The Biology of the Honey Bee, Harvard Unv. Press, ,s. 81.
  • OLSEN,S., (2006), The Golden Section: Nature's Greatest Secret, Walker & Company.
  • PEARCE, P., (1978), Structure in Nature is a Strategy for Design, MIT Press.
  • POSAMENTIER, A., (2007). The Fabulous Fibonacci Numbers, Prometheus Books, New York.
  • READING, N., Dynamical Symmetries: Mathematical Synthesis between Chaos Theory (Complexity),Fractal Geometry, and the Golden Mean, Architectural Design 64, 11/12 (1994): xii-xv.
  • SCHOLFIELD, P.H., (1958), The theory of Proportion in Architecture, Cambridge University Pres, xx
  • SKINNER, S., (2006), Sacred Geometry: Deciphering the Code, Octopus Publishing, London, 44-45
  • STERNE C., (2008) Blueprints of the Cosmos http://www.world-mysteries.com/newgw/sci_blueprint1.htm
  • Von FRISCH, K,. (1974), Animal Architecture, Harcourt, Brace Jovanavich, Inc., NY.
  • WEIS, G., (2002), Golden Hexagons, Journal for Geometry and Graphics Volume 6, No. 2, 167-182.
  • WINSTON, M,. (1991), The Biology of the Honey Bee, Harvard Unv. Press.

DESIGNING BY GOLDEN RATIO:? CODE IN NATURE, ARCHITECTURE AND STRUCTURAL DESIGN

Yıl 2009, Cilt: 10 Sayı: 2, 149 - 157, 05.08.2016

Öz

Mathematical construction and form/structures of nature in universe have been studied and been discussed by philosophers, mathematicians, scientists and artists throughout the centuries. This cosmic query has led important developments in mathematics and physics as in many other disciplines and through this learning process inter discipliner knowledge has been growing exponentially by those feed backs. Golden ratio is one of the oldest and probably the persistent parameters used by human being to understand/ inspire/ learn and implement the growth model of nature and design aesthetic of natural structures. It is seen that, phi code facilitates to explain not only developments of forms in nature (morphogenesis), but also to explain aesthetic and structural forms of work of art and architecture. This study exemplifies how the golden ratio, ? (phi) is coded (? code) in nature, art and architecture. Furthermore, this paper introduces a discussion platform that phi code could be a tool to optimize the structural behavior as it is seen in some structural systems like shells.

Kaynakça

  • BERGİL, M., (1993), Doğada/Bilimde/Sanatta, Altın Oran, Arkeoloji ve Sanat Yayınları, 155.
  • BORGES, R. F., (2004) The Phi Code in Nature, Architecture and Engineering, Design and Nature-2 Conference, ed:
  • Brebbia, C. A., WIT Pres, 401-409
  • BOUSSORA, K., MAZOUZ, S., (2004) The Use of the Golden Section in the Great Mosque at Kairouan, Nexus
  • Network Journal, vol.6, no.1, 7-16
  • CHOWN, M,. (2002), Why Should Nature Have a Favorite Number, NewScientist, 21/28, 55-56.
  • COOK, T. A., (1979), The Curves of Life, Being an Account of Spiral Formations and Their Application to Growth in Nature, to Science and to Art. Dover, New York.
  • DOCZI, G., 1994, The Power of Limits : Proportional Harmonies in Nature, Art, and Architecture, Shambhala Publications,
  • DUNLAP, A,. 2003, The Golden Ratio and Fibonacci Numbers World Scientific Press.
  • FLETCHER, R., (2001), Palladio’s Villa Emo: The Golden Proportion Hypothesis Defended, Nexus Network Journal vol.3, no.2, 105-112.
  • FRINGS, M., (2007), The Golden Section in Architectural Theory, Nexus Network Journal vol. 4 no. 1, pp. 9-32. http://www.emis.de/journals/NNJ/Frings.html
  • GHYKA, M., (1977), The Geometry of Art and Life Dover Publications, New York.
  • HEMENWAY, P., (2005), Divine Proportion: Phi in Art, Nature, and Science. Sterling Publishing, New York, 20– , 127–129.
  • HUNTLEY H. E., (1970), The Divine Proportion, Dover Publications.
  • JEAN, R. V., (1994), Phyllotaxis: A Systematic Study in Plant Morphogenesis. New York: Cambridge University Press.
  • LAWLOR, R., (2002), Sacred Geometry: Philosophy and Practice, Thames and Hudson, London, 53-60.
  • LIVIO, M., (2002), The Golden Ratio: The Story of Phi, The World's Most Astonishing Number. New York: Broadway Books.
  • MAINZER, K., (1996), Symmetries of Nature: A Handbook for Philosophy of Nature and Science, Walter de Gruyter,199–200.
  • STERNE C., (2008), Blueprints of the Cosmos http://www.world-mysteries.com/newgw/sci_blueprint1.htm
  • MARK, L., (1991), The Biology of the Honey Bee, Harvard Unv. Press, ,s. 81.
  • OLSEN,S., (2006), The Golden Section: Nature's Greatest Secret, Walker & Company.
  • PEARCE, P., (1978), Structure in Nature is a Strategy for Design, MIT Press.
  • POSAMENTIER, A., (2007). The Fabulous Fibonacci Numbers, Prometheus Books, New York.
  • READING, N., Dynamical Symmetries: Mathematical Synthesis between Chaos Theory (Complexity),Fractal Geometry, and the Golden Mean, Architectural Design 64, 11/12 (1994): xii-xv.
  • SCHOLFIELD, P.H., (1958), The theory of Proportion in Architecture, Cambridge University Pres, xx
  • SKINNER, S., (2006), Sacred Geometry: Deciphering the Code, Octopus Publishing, London, 44-45
  • STERNE C., (2008) Blueprints of the Cosmos http://www.world-mysteries.com/newgw/sci_blueprint1.htm
  • Von FRISCH, K,. (1974), Animal Architecture, Harcourt, Brace Jovanavich, Inc., NY.
  • WEIS, G., (2002), Golden Hexagons, Journal for Geometry and Graphics Volume 6, No. 2, 167-182.
  • WINSTON, M,. (1991), The Biology of the Honey Bee, Harvard Unv. Press.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA55ZH87YT
Bölüm Makaleler
Yazarlar

Semra Arslan Selçuk Bu kişi benim

Arzu Gönenç Sorguç Bu kişi benim

Aslı Er Akan Bu kişi benim

Yayımlanma Tarihi 5 Ağustos 2016
Yayımlandığı Sayı Yıl 2009 Cilt: 10 Sayı: 2

Kaynak Göster

APA Selçuk, S. A., Sorguç, A. G., & Akan, A. E. (2016). ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ. Trakya Üniversitesi Fen Bilimleri Dergisi, 10(2), 149-157.
AMA Selçuk SA, Sorguç AG, Akan AE. ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ. Trakya Univ J Sci. Ağustos 2016;10(2):149-157.
Chicago Selçuk, Semra Arslan, Arzu Gönenç Sorguç, ve Aslı Er Akan. “ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ”. Trakya Üniversitesi Fen Bilimleri Dergisi 10, sy. 2 (Ağustos 2016): 149-57.
EndNote Selçuk SA, Sorguç AG, Akan AE (01 Ağustos 2016) ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ. Trakya Üniversitesi Fen Bilimleri Dergisi 10 2 149–157.
IEEE S. A. Selçuk, A. G. Sorguç, ve A. E. Akan, “ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ”, Trakya Univ J Sci, c. 10, sy. 2, ss. 149–157, 2016.
ISNAD Selçuk, Semra Arslan vd. “ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ”. Trakya Üniversitesi Fen Bilimleri Dergisi 10/2 (Ağustos 2016), 149-157.
JAMA Selçuk SA, Sorguç AG, Akan AE. ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ. Trakya Univ J Sci. 2016;10:149–157.
MLA Selçuk, Semra Arslan vd. “ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ”. Trakya Üniversitesi Fen Bilimleri Dergisi, c. 10, sy. 2, 2016, ss. 149-57.
Vancouver Selçuk SA, Sorguç AG, Akan AE. ALTIN ORANLA TASARLAMAK: DOĞADA, MİMARLIKTA VE YAPISAL TASARIMDA ? DİZİNİ. Trakya Univ J Sci. 2016;10(2):149-57.