Araştırma Makalesi
BibTex RIS Kaynak Göster

A Content and Sentimental Analysis Study for Virtual Reality Glasses Advertisements: Quest 2 Example

Yıl 2023, , 218 - 245, 31.01.2023
https://doi.org/10.37679/trta.1207899

Öz

Developments in hardware in terms of communication technologies have begun to frame different sectors such as entertainment, education and service. Virtual reality glasses also symbolize one of the basic products that can be placed in this frame. It is thought that analyzing the advertisements for these hardwares, which serve many different purposes, may help to understand the widespread effect in the sector and the user trends. Based on this, the study aims to obtain up-to-date clues about marketing moves through user tendency. In the study, it is planned to learn the relevant trend through the ad audience. In this context, the YouTube video named Oculus Quest 2: First Steps was chosen as an example advertisement. 656 comments in the video were examined through content and sentimental analyzes. Results has shown that satirical references to rivals are the points that viewers mostly focused on. Another finding is that the games in the video show real and virtual universe together, creating confusion in the perception of the audience. It is thought that the attention of the companies that will proceed with similar advertisements in the sectoral sense to these two issues may affect the user tendency in a more positive way.

Kaynakça

  • Adalı, E. (2012). Doğal Dil İşleme. TBV Journal of Computer Science and Engineering, 5(2), 1-19.
  • Bae, Y., & Lee, H. (2012). Sentiment analysis of twitter audiences: Measuring the positive or negative influence of popular twitterers. Journal of the American Society for Information Science and Technology, 63, 2521-2535
  • Bengtsson, M. (2016). How to plan and perform a qualitative study using content analysis. NursingPlus Open, 2, 8-14.
  • Berthold, A., & Larsson, D. (2017). Developing Social Media Analytics by the Means of Machine Learning: The Case of the Diffusion of Virtual Reality Technology, (Unpublished Master’s Thesis), Chalmers University of Technology
  • Bıkmaz Bilgen, Ö. & Doğan, N. (2017). Puanlayıcılar Arası Güvenirlik Belirleme Tekniklerinin Karşılaştırılması. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 8(1), 63-78.
  • Byrne, M., O’Malley, L., Glenny, A. M., Pretty, I., & Tickle, M. (2021). Assessing the reliability of automatic sentiment analysis tools on rating the sentiment of reviews of NHS dental practices in England. PLOS One, 16(12), 1-10.
  • Çalık, M. & Sözbilir, M. (2014). İçerik Analizinin Parametreleri. Eğitim ve Bilim, 39(174), 33-38.
  • Dinçer, S. (2018). Eğitim Bilimleri Araştırmalarında İçerik Analizi: Meta-Analiz, Meta-Sentez, Betimsel İçerik Analizi. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 7(1), 176- 190
  • Downe-Wamboldt, B. (1992). Content analysis: Method, applications, and issues. Health Care for Women International, 13(3), 313-321.
  • Egliston, B., & Carter, M. (2022). Oculus imaginaries: The promises and perils of Facebook’s virtual reality. New Media & Society, 24(1), 70-89.
  • Erlingsson, C., & Brysiewicz, P. (2017). A hands-on guide to doing content analysis. African Journal of Emergency Medicine, 7, 93-99.
  • Farias, D. I. H., & Rosso, P. (2017). Irony, Sarcasm, and Sentiment Analysis. In: Pozzi, F. A., Fersini, E., Messina, E. & Liu, B. (Eds.), Sentiment Analysis in Social Networks, 113- 128, Cambridge: Elsevier.
  • Geray, H. (2006). Toplumsal Araştırmalarda Nicel ve Nitel Yöntemlere Giriş, Ankara: Siyasal Kitabevi.
  • Graneheim, U. H., & Lundman, B. (2004). Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness. Nurse Education Today, 24, 105-11
  • Jelen, B. (2016, Mayıs). Technology WorkBook: Excel Sentiment Analysis. Strategic Finance, 58-59
  • Jeong, H., Bayro, A., Umesh, S. P., Mamgain, K., & Lee, M. (2022). Social Media Users’ Perceptions of a Wearable Mixed Reality Headset During the COVID-19 Pandemic: Aspect-Based Sentiment Analysis. JMIR Serious Games, 1(3), 1-17
  • Kaynar, O., Görmez, Y., Yıldız, M., & Albayrak, A. (2016). Makine Öğrenmesi Yöntemleri ile Duygu Analizi. International Artificial Intelligence and Data Processing Symposium (s. 234-241), 17-18 Eylül 2016, Malatya, Türkiye
  • Kermani, F. Z., Sadeghi, F., & Eslami, E. (2019). Solving the Twitter sentiment analysis problem based on a machine learning-based approach. Evolutionary Intelligence, 13, 381-398.
  • Kumar, P. S., Yadav, R. B., & Dhavale, S. V. (2021). A Comparison of Pre-trained Word Embeddings for Sentiment Analysis Using Deep Learning. In: Gupta, D. et al. (Eds.), International Conference on Innovative Computing and Communications, Advances in Untelligent Systems and Computing (p. 525-537), 21-23 February 2020, Delhi, India.
  • Küçük, D., & Arıcı, N. (2018). Doğal Dil İşlemede Derin Öğrenme Uygulamaları Üzerine Bir Literatür Çalışması. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi, 2(2), 76-86.
  • Livas, C., Delli, K., & Pandis, N. (2018). “My Invisalign experience”: content, metrics and comment sentiment analysis of the most popular patient testimonials on YouTube. Progress in Orthodontics, 19(3), 1-8.
  • Mengü, M. M. (2006). Reklam Sloganları ve Tüketici Zihni. İstanbul Üniversitesi İletişim Fakültesi Dergisi, 25, 109-121.
  • Oliveira, N., Cortez, P., & Areal, N. (2016). Stock market sentiment lexicon acquisition using microblogging data and statistical measures. Decision Support Systems, 85, 62-73.
  • Ong, S. C., Pek, L. C. I., Chiang, T. L. C., Soon, H. W., Chua, K. C., Sassmann, C., Razali, M. A. B., & Koh, T. C. (2020). A Novel Automated Visual Acuity Test Using a Portable Head-mounted Display. Journal of the American Academy of Optometry: Optometry and Vision Science, 97(8), 591-597.
  • Powell, L. M., Rebman, C. M., Dempsey, A., & Myers, C. J. (2021). Using sentiment analysis to measure emotional toxicity of social media data during the COVID pandemic. Issues in Information Systems, 22(1), 200-214
  • Roehm, M. L., & Roehm Jr. H. A. (2014). Consumer responses to parodic ads. Journal of Consumer Psychology, 24(1), 18-33.
  • Satyanarayana, G. Bhuvana, J., & Balamurugan, M. (2020). Sentimental Analysis on voice using AWS Comprehend. International Conference on Computer Communication and Informatics (p. 1-4), 22-24 January 2020, Coimbatore, India.
  • Shen, C., Ho, J., & Ma, H. (2019). Temporal Trend Analysis on Virtual Reality Using Social Media Mining. In: Visvizi, A., & Lytras, M. D. (Eds.), Research & Innovation Forum (p. 189-198), 24-26 April 2019, Rome, Italy.
  • Sirohi, C., Jain, S., Jha, J., & Vashist, V. (2021). Integrating Behavioral Analytics with LSTM to Get Stock Predictions with Increased Accuracy. In: Gupta, D. et al. (Eds.), International Conference on Innovative Computing and Communications, Advances in Untelligent Systems and Computing (p. 769-778), 21-23 February 2020, Delhi, India
  • Syrett, M., & Lammiman, J. (2004). Advertising and millennials. Young Consumers, 5(4), 62-73.
  • Şeker, S. E. (2016). Duygu Analizi (Sentimental Analysis). YBS Ansiklopedi, 3(3), 21-36.
  • Teng, S., Khong, K. W., Sharif, S. P., & Ahmed, A. (2020). YouTube Video Comments on Healthy Eating: Descriptive and Predictive Analysis. JMIR Public Health Surveill, 6(4), 1-13.
  • Tokcaer, S. (2021). Türkçe Metinlerde Duygu Analizi. Journal of Yasar University, 16(63), 1514- 1534.
  • Uryupina, O., Plank, B., Severyn, A., Rotondi, A., & Moschitti, A. (2014). SenTube: A Corpus for Sentiment Analysis on YouTube Social Media. In: Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odjik, J., & Piperidis, S. (Eds.), Proceedings of the Ninth International Conference on Language Resources and Evaluation (p. 4244-4249), 26-31 May 2014, Reykjavik, Iceland.
  • Ültay, E., Akyurt, H., & Ültay, N. (2021). Sosyal Bilimlerde Betimsel İçerik Analizi. IBAD Sosyal Bilimler Dergisi, 10, 188-201.
  • Warrens, M. J. (2015). Five Ways to Look at Cohen’s Kappa. Journal of Psychology & Psychotherapy, 5(4
  • Werner, C., Tapuc, G., Montgomery, L., Sharma, D., Dodos, S., & Damian, D. (2018). How Angry are Your Customers? Sentiment Analysis of Support Tickets that Escalate. 1st International Workshop on Affective Computing for Requirements Engineering (AffectRE) (p. 1-8), 21 August 2018, Banff, AB, Canada.
  • Wilson, T., Wiebe, J., & Hoffman, P. (2005). Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (p. 347- 354), 6-8 October 2005, Vancouver, USA.
  • Yıldırım, A. & Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri, 8. Baskı, Ankara: Seçkin Yayıncılık.
  • Zhou, H. (2020). Learn Data Mining Through Excel: A Step-by-Step Approach for Understanding Machine Learning Methods, New York: APress.
  • Zuidhof, N., Allouch, S. B., Peters, O., & Verbeek, P. P. (2019). Anticipated Acceptance of Head Mounted Displays: a content analysis of YouTube comments, PerCom Work in Progress on Pervasive Computing and Communications (p. 399-402), 11-15 March 2019, Kyoto, Japan
  • Çevrim içi Kaynakça
  • AML Team (t.y.). Microsoft AppSource: Azure Machine Learning. 11.11.2022 tarihinde https:// appsource.microsoft.com/en-us/product/office/wa104379638?tab=overview adresinden erişilmiştir.
  • AWS, (t.y.). Amazon Comprehend. 11.11.2022 tarihinde https://aws.amazon.com/tr/comprehend/ adresinden erişilmiştir.
  • Browserling (t.y.). Online JSON Tools. 01.11.2022 tarihinde https://onlinejsontools.com/convert- json-to-text adresinden erişilmiştir.
  • Carter, R. (2021, Aralık 28). HoloLens 2 vs Oculus Quest 2: Which is Best?. XR Today, 11.11.2022 tarihinde https://www.xrtoday.com/mixed-reality/hololens-2-vs-oculus-quest- 2-which-is-best/ adresinden erişilmiştir.
  • Clement, J. (2022, Şubat 4). Share of game developers worldwide working on game projects for select VR/AR platforms in 2022. Statista, 11.11.2022 tarihinde https:// www.statista.com/statistics/1060239/game-developers-vr-ar-platforms/ adresinden erişilmiştir.
  • Free Word Cloud Generator (t.y.). Generate Word Cloud. 12.11.2022 tarihinde https://www. freewordcloudgenerator.com/generatewordcloud adresinden erişilmiştir.
  • Graham, M. (2022, Şubat 10). Meta’s Super Bowl Ad Leans on an Animatronic Dog to Promote Metaverse. The Wall Street Journal, 11.11.2022 tarihinde https://www. wsj.com/articles/metas-super-bowl-ad-leans-on-an-animatronic-dog-to-promote- Metaverse 11644503400?mod=pls_whats_news_us_business_f adresinden erişilmiştir.
  • Google (t.y.). YouTube Data API, Implementation: Comments. 01.11.2022 tarihinde https:// developers.google.com/youtube/v3/guides/implementation/comments adresinden erişilmiştir.
  • Karaahmetovic, S. (2022, Nisan 20). Goldman Sachs Much More Positive on VR Than AR; Meta and Apple Seen as Key Competitors. Investing.com, 11.11.2022 tarihinde https://www.investing.com/news/stock-market-news/goldman-sachs-much- more-positive-on-vr-than-ar-meta-and-apple-seen-as-key-competitors- 432SI-2806922 adresinden erişilmiştir.
  • Lang, B. (2022, Şubat 14). VR’s Biggest Ad Yet Pushed ‘Meta Quest’ to a National Audience During the Super Bowl. Road to VR, 11.11.2022 tarihinde https://www.roadtovr. com/facebook-meta-oculus-quest-2-super-bowl-ad-2022/ adresinden erişilmiştir. McMillan, M. (2022, Ekim 31). Mixed Reality vs Augmented Reality vs Virtual Reality - what’sthe difference. Tom’s Guide 12.11.2022 tarihinde https://www.tomsguide.com/features/what-is-mixed-reality adresinden erişilmiştir.
  • Meta Quest (2020, Aralık 19). Oculus Quest 2: First Steps. 01.11.2022 tarihinde https://www. youtube.com/watch?v=60yP8f5E-B4 adresinden erişilmiştir.
  • Microsoft (t.y.). Microsoft Azure AI Fundamentals: Explore visual tools for machine learning.Learning Path, 11.11.2022 tarihinde https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/ adresinden erişilmiştir.
  • Mihai7q (t.y.). Download All Comments. 01.11.2022 tarihinde https://youtuberandomcomment. com/ adresinden erişilmiştir.
  • Pachhandara, N. (2022, Nisan 25). Looking Forward To The Future Of AR, VR And MR. Forbes, 11.11.2022 tarihinde https://www.forbes.com/sites/forbestechcouncil/ 2022/04/25/looking-forward-to-the-future-of-ar-vr-and-mr/?sh=4a- 08847e65ca adresinden erişilmiştir.
  • Roldós, I. (2020, Haziran 9). NLP, Machine Learning & AI, Explained. 11.11.2022 tarihinde https:// monkeylearn.com/blog/nlp-ai/ adresinden erişilmiştir.
  • Roth, E. (2022, Şubat 13). Meta’s Quest 2 Super Bowl ad takes a retired animatronic dog into the Metaverse. The Verge, 11.11.2022 tarihinde https://www.theverge. com/2022/2/12/22930776/metas-quest-2-super-bowl-Metaverse-ad-animatronic- dog-virtual-reality adresinden erişilmiştir.
  • String and Tins (t.y.). Quest 2 - First Steps. Stringandtins.com, 11.11.2022 tarihinde https:// www.stringandtins.com/news/quest-2-first-steps adresinden erişilmiştir.
  • TÜBA (t.y.). Head-mounted display. Türkiye Bilimler Akademisi Sözlüğü, 11.11.2022 tarihinde http://terim.tuba.gov.tr/ adresinden erişilmiştir.
  • Ubrani, J., Mainelli, T., & Reith, R. (2022, Ekim 5). AR & VR Headsets Market Share. IDC, 11.11.2022 tarihinde https://www.idc.com/promo/arvr adresinden erişilmiştir.
  • Wood, R. (2021, Temmuz 26). Not just for VR: Oculus Quest 2 takes on Magic Leap with augmented reality tech. Techradar 11.11.2022 tarihinde https://www.techradar. com/news/not-just-for-vr-oculus-quest-2-takes-on-magic-leap-with-augmented- reality-tech adresinden erişilmiştir.

Sanal Gerçeklik Gözlüğü Reklamlarına Yönelik Bir İçerik ve Duygu Analizi Çalışması: Quest 2 Örneği

Yıl 2023, , 218 - 245, 31.01.2023
https://doi.org/10.37679/trta.1207899

Öz

İletişim teknolojileri açısından donanımlarda kaydedilen gelişmeler, sadece eğlenceye yönelik ortamları değil, eğitim ve hizmet gibi farklı sektörleri de çerçevelemeye başlamıştır. Sanal gerçeklik gözlükleri de bu çerçeveye yerleştirilebilecek temel ürünlerden birini simgelemektedir. Pek çok farklı amaca hizmet edecek şekilde sunulmaya başlayan bu donanımlara yönelikreklamların incelenmesinin, sektörel anlamdaki yaygın etkiyi ve kullanıcı nezdindeki eğilimi anlamakta yardımcı olabileceği düşünülmektedir. Çalışma buradan yola çıkarak pazarlama hamlelerine dair güncel ipuçları elde edilmesini kullanıcı eğilimi üzerinden amaçlamaktadır. Çalışmada, ilgili eğilimin, reklam izleyicileri üzerinden öğrenilmesi planlanmıştır. Bu bağlamda örnek reklam olarak Oculus Quest 2: First Steps isimli YouTube videosu seçilmiştir. Videodaki 656 yoruma yönelik olarak içerik ve duygu analizi süreçleri gerçekleştirilmiştir. Elde edilen sonuçlar, video içerisinde yer alan rakip firmalara yapılmış olan hiciv yönlü atıfların, izleyicilerin en sık dikkat ettiği noktalar olduğunu göstermiştir. Diğer bir bulgu da videoda yer alan oyunların gerçek ve sanal evreni birlikte gösteriyor olmasının, izleyicilerin algısında yarattığı kavram kargaşasıdır. Sektörel anlamda benzer reklamlarla yol alacak firmaların bu iki konuya dikkat etmesinin, kullanıcı eğilimini daha olumlu yönde etkileyebileceği düşünülmektedir.

Kaynakça

  • Adalı, E. (2012). Doğal Dil İşleme. TBV Journal of Computer Science and Engineering, 5(2), 1-19.
  • Bae, Y., & Lee, H. (2012). Sentiment analysis of twitter audiences: Measuring the positive or negative influence of popular twitterers. Journal of the American Society for Information Science and Technology, 63, 2521-2535
  • Bengtsson, M. (2016). How to plan and perform a qualitative study using content analysis. NursingPlus Open, 2, 8-14.
  • Berthold, A., & Larsson, D. (2017). Developing Social Media Analytics by the Means of Machine Learning: The Case of the Diffusion of Virtual Reality Technology, (Unpublished Master’s Thesis), Chalmers University of Technology
  • Bıkmaz Bilgen, Ö. & Doğan, N. (2017). Puanlayıcılar Arası Güvenirlik Belirleme Tekniklerinin Karşılaştırılması. Eğitimde ve Psikolojide Ölçme ve Değerlendirme Dergisi, 8(1), 63-78.
  • Byrne, M., O’Malley, L., Glenny, A. M., Pretty, I., & Tickle, M. (2021). Assessing the reliability of automatic sentiment analysis tools on rating the sentiment of reviews of NHS dental practices in England. PLOS One, 16(12), 1-10.
  • Çalık, M. & Sözbilir, M. (2014). İçerik Analizinin Parametreleri. Eğitim ve Bilim, 39(174), 33-38.
  • Dinçer, S. (2018). Eğitim Bilimleri Araştırmalarında İçerik Analizi: Meta-Analiz, Meta-Sentez, Betimsel İçerik Analizi. Bartın Üniversitesi Eğitim Fakültesi Dergisi, 7(1), 176- 190
  • Downe-Wamboldt, B. (1992). Content analysis: Method, applications, and issues. Health Care for Women International, 13(3), 313-321.
  • Egliston, B., & Carter, M. (2022). Oculus imaginaries: The promises and perils of Facebook’s virtual reality. New Media & Society, 24(1), 70-89.
  • Erlingsson, C., & Brysiewicz, P. (2017). A hands-on guide to doing content analysis. African Journal of Emergency Medicine, 7, 93-99.
  • Farias, D. I. H., & Rosso, P. (2017). Irony, Sarcasm, and Sentiment Analysis. In: Pozzi, F. A., Fersini, E., Messina, E. & Liu, B. (Eds.), Sentiment Analysis in Social Networks, 113- 128, Cambridge: Elsevier.
  • Geray, H. (2006). Toplumsal Araştırmalarda Nicel ve Nitel Yöntemlere Giriş, Ankara: Siyasal Kitabevi.
  • Graneheim, U. H., & Lundman, B. (2004). Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness. Nurse Education Today, 24, 105-11
  • Jelen, B. (2016, Mayıs). Technology WorkBook: Excel Sentiment Analysis. Strategic Finance, 58-59
  • Jeong, H., Bayro, A., Umesh, S. P., Mamgain, K., & Lee, M. (2022). Social Media Users’ Perceptions of a Wearable Mixed Reality Headset During the COVID-19 Pandemic: Aspect-Based Sentiment Analysis. JMIR Serious Games, 1(3), 1-17
  • Kaynar, O., Görmez, Y., Yıldız, M., & Albayrak, A. (2016). Makine Öğrenmesi Yöntemleri ile Duygu Analizi. International Artificial Intelligence and Data Processing Symposium (s. 234-241), 17-18 Eylül 2016, Malatya, Türkiye
  • Kermani, F. Z., Sadeghi, F., & Eslami, E. (2019). Solving the Twitter sentiment analysis problem based on a machine learning-based approach. Evolutionary Intelligence, 13, 381-398.
  • Kumar, P. S., Yadav, R. B., & Dhavale, S. V. (2021). A Comparison of Pre-trained Word Embeddings for Sentiment Analysis Using Deep Learning. In: Gupta, D. et al. (Eds.), International Conference on Innovative Computing and Communications, Advances in Untelligent Systems and Computing (p. 525-537), 21-23 February 2020, Delhi, India.
  • Küçük, D., & Arıcı, N. (2018). Doğal Dil İşlemede Derin Öğrenme Uygulamaları Üzerine Bir Literatür Çalışması. Uluslararası Yönetim Bilişim Sistemleri ve Bilgisayar Bilimleri Dergisi, 2(2), 76-86.
  • Livas, C., Delli, K., & Pandis, N. (2018). “My Invisalign experience”: content, metrics and comment sentiment analysis of the most popular patient testimonials on YouTube. Progress in Orthodontics, 19(3), 1-8.
  • Mengü, M. M. (2006). Reklam Sloganları ve Tüketici Zihni. İstanbul Üniversitesi İletişim Fakültesi Dergisi, 25, 109-121.
  • Oliveira, N., Cortez, P., & Areal, N. (2016). Stock market sentiment lexicon acquisition using microblogging data and statistical measures. Decision Support Systems, 85, 62-73.
  • Ong, S. C., Pek, L. C. I., Chiang, T. L. C., Soon, H. W., Chua, K. C., Sassmann, C., Razali, M. A. B., & Koh, T. C. (2020). A Novel Automated Visual Acuity Test Using a Portable Head-mounted Display. Journal of the American Academy of Optometry: Optometry and Vision Science, 97(8), 591-597.
  • Powell, L. M., Rebman, C. M., Dempsey, A., & Myers, C. J. (2021). Using sentiment analysis to measure emotional toxicity of social media data during the COVID pandemic. Issues in Information Systems, 22(1), 200-214
  • Roehm, M. L., & Roehm Jr. H. A. (2014). Consumer responses to parodic ads. Journal of Consumer Psychology, 24(1), 18-33.
  • Satyanarayana, G. Bhuvana, J., & Balamurugan, M. (2020). Sentimental Analysis on voice using AWS Comprehend. International Conference on Computer Communication and Informatics (p. 1-4), 22-24 January 2020, Coimbatore, India.
  • Shen, C., Ho, J., & Ma, H. (2019). Temporal Trend Analysis on Virtual Reality Using Social Media Mining. In: Visvizi, A., & Lytras, M. D. (Eds.), Research & Innovation Forum (p. 189-198), 24-26 April 2019, Rome, Italy.
  • Sirohi, C., Jain, S., Jha, J., & Vashist, V. (2021). Integrating Behavioral Analytics with LSTM to Get Stock Predictions with Increased Accuracy. In: Gupta, D. et al. (Eds.), International Conference on Innovative Computing and Communications, Advances in Untelligent Systems and Computing (p. 769-778), 21-23 February 2020, Delhi, India
  • Syrett, M., & Lammiman, J. (2004). Advertising and millennials. Young Consumers, 5(4), 62-73.
  • Şeker, S. E. (2016). Duygu Analizi (Sentimental Analysis). YBS Ansiklopedi, 3(3), 21-36.
  • Teng, S., Khong, K. W., Sharif, S. P., & Ahmed, A. (2020). YouTube Video Comments on Healthy Eating: Descriptive and Predictive Analysis. JMIR Public Health Surveill, 6(4), 1-13.
  • Tokcaer, S. (2021). Türkçe Metinlerde Duygu Analizi. Journal of Yasar University, 16(63), 1514- 1534.
  • Uryupina, O., Plank, B., Severyn, A., Rotondi, A., & Moschitti, A. (2014). SenTube: A Corpus for Sentiment Analysis on YouTube Social Media. In: Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odjik, J., & Piperidis, S. (Eds.), Proceedings of the Ninth International Conference on Language Resources and Evaluation (p. 4244-4249), 26-31 May 2014, Reykjavik, Iceland.
  • Ültay, E., Akyurt, H., & Ültay, N. (2021). Sosyal Bilimlerde Betimsel İçerik Analizi. IBAD Sosyal Bilimler Dergisi, 10, 188-201.
  • Warrens, M. J. (2015). Five Ways to Look at Cohen’s Kappa. Journal of Psychology & Psychotherapy, 5(4
  • Werner, C., Tapuc, G., Montgomery, L., Sharma, D., Dodos, S., & Damian, D. (2018). How Angry are Your Customers? Sentiment Analysis of Support Tickets that Escalate. 1st International Workshop on Affective Computing for Requirements Engineering (AffectRE) (p. 1-8), 21 August 2018, Banff, AB, Canada.
  • Wilson, T., Wiebe, J., & Hoffman, P. (2005). Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis. Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (p. 347- 354), 6-8 October 2005, Vancouver, USA.
  • Yıldırım, A. & Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri, 8. Baskı, Ankara: Seçkin Yayıncılık.
  • Zhou, H. (2020). Learn Data Mining Through Excel: A Step-by-Step Approach for Understanding Machine Learning Methods, New York: APress.
  • Zuidhof, N., Allouch, S. B., Peters, O., & Verbeek, P. P. (2019). Anticipated Acceptance of Head Mounted Displays: a content analysis of YouTube comments, PerCom Work in Progress on Pervasive Computing and Communications (p. 399-402), 11-15 March 2019, Kyoto, Japan
  • Çevrim içi Kaynakça
  • AML Team (t.y.). Microsoft AppSource: Azure Machine Learning. 11.11.2022 tarihinde https:// appsource.microsoft.com/en-us/product/office/wa104379638?tab=overview adresinden erişilmiştir.
  • AWS, (t.y.). Amazon Comprehend. 11.11.2022 tarihinde https://aws.amazon.com/tr/comprehend/ adresinden erişilmiştir.
  • Browserling (t.y.). Online JSON Tools. 01.11.2022 tarihinde https://onlinejsontools.com/convert- json-to-text adresinden erişilmiştir.
  • Carter, R. (2021, Aralık 28). HoloLens 2 vs Oculus Quest 2: Which is Best?. XR Today, 11.11.2022 tarihinde https://www.xrtoday.com/mixed-reality/hololens-2-vs-oculus-quest- 2-which-is-best/ adresinden erişilmiştir.
  • Clement, J. (2022, Şubat 4). Share of game developers worldwide working on game projects for select VR/AR platforms in 2022. Statista, 11.11.2022 tarihinde https:// www.statista.com/statistics/1060239/game-developers-vr-ar-platforms/ adresinden erişilmiştir.
  • Free Word Cloud Generator (t.y.). Generate Word Cloud. 12.11.2022 tarihinde https://www. freewordcloudgenerator.com/generatewordcloud adresinden erişilmiştir.
  • Graham, M. (2022, Şubat 10). Meta’s Super Bowl Ad Leans on an Animatronic Dog to Promote Metaverse. The Wall Street Journal, 11.11.2022 tarihinde https://www. wsj.com/articles/metas-super-bowl-ad-leans-on-an-animatronic-dog-to-promote- Metaverse 11644503400?mod=pls_whats_news_us_business_f adresinden erişilmiştir.
  • Google (t.y.). YouTube Data API, Implementation: Comments. 01.11.2022 tarihinde https:// developers.google.com/youtube/v3/guides/implementation/comments adresinden erişilmiştir.
  • Karaahmetovic, S. (2022, Nisan 20). Goldman Sachs Much More Positive on VR Than AR; Meta and Apple Seen as Key Competitors. Investing.com, 11.11.2022 tarihinde https://www.investing.com/news/stock-market-news/goldman-sachs-much- more-positive-on-vr-than-ar-meta-and-apple-seen-as-key-competitors- 432SI-2806922 adresinden erişilmiştir.
  • Lang, B. (2022, Şubat 14). VR’s Biggest Ad Yet Pushed ‘Meta Quest’ to a National Audience During the Super Bowl. Road to VR, 11.11.2022 tarihinde https://www.roadtovr. com/facebook-meta-oculus-quest-2-super-bowl-ad-2022/ adresinden erişilmiştir. McMillan, M. (2022, Ekim 31). Mixed Reality vs Augmented Reality vs Virtual Reality - what’sthe difference. Tom’s Guide 12.11.2022 tarihinde https://www.tomsguide.com/features/what-is-mixed-reality adresinden erişilmiştir.
  • Meta Quest (2020, Aralık 19). Oculus Quest 2: First Steps. 01.11.2022 tarihinde https://www. youtube.com/watch?v=60yP8f5E-B4 adresinden erişilmiştir.
  • Microsoft (t.y.). Microsoft Azure AI Fundamentals: Explore visual tools for machine learning.Learning Path, 11.11.2022 tarihinde https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/ adresinden erişilmiştir.
  • Mihai7q (t.y.). Download All Comments. 01.11.2022 tarihinde https://youtuberandomcomment. com/ adresinden erişilmiştir.
  • Pachhandara, N. (2022, Nisan 25). Looking Forward To The Future Of AR, VR And MR. Forbes, 11.11.2022 tarihinde https://www.forbes.com/sites/forbestechcouncil/ 2022/04/25/looking-forward-to-the-future-of-ar-vr-and-mr/?sh=4a- 08847e65ca adresinden erişilmiştir.
  • Roldós, I. (2020, Haziran 9). NLP, Machine Learning & AI, Explained. 11.11.2022 tarihinde https:// monkeylearn.com/blog/nlp-ai/ adresinden erişilmiştir.
  • Roth, E. (2022, Şubat 13). Meta’s Quest 2 Super Bowl ad takes a retired animatronic dog into the Metaverse. The Verge, 11.11.2022 tarihinde https://www.theverge. com/2022/2/12/22930776/metas-quest-2-super-bowl-Metaverse-ad-animatronic- dog-virtual-reality adresinden erişilmiştir.
  • String and Tins (t.y.). Quest 2 - First Steps. Stringandtins.com, 11.11.2022 tarihinde https:// www.stringandtins.com/news/quest-2-first-steps adresinden erişilmiştir.
  • TÜBA (t.y.). Head-mounted display. Türkiye Bilimler Akademisi Sözlüğü, 11.11.2022 tarihinde http://terim.tuba.gov.tr/ adresinden erişilmiştir.
  • Ubrani, J., Mainelli, T., & Reith, R. (2022, Ekim 5). AR & VR Headsets Market Share. IDC, 11.11.2022 tarihinde https://www.idc.com/promo/arvr adresinden erişilmiştir.
  • Wood, R. (2021, Temmuz 26). Not just for VR: Oculus Quest 2 takes on Magic Leap with augmented reality tech. Techradar 11.11.2022 tarihinde https://www.techradar. com/news/not-just-for-vr-oculus-quest-2-takes-on-magic-leap-with-augmented- reality-tech adresinden erişilmiştir.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İletişim ve Medya Çalışmaları
Bölüm Makaleler
Yazarlar

Ali Efe İralı 0000-0001-5332-1367

Yayımlanma Tarihi 31 Ocak 2023
Gönderilme Tarihi 21 Kasım 2022
Kabul Tarihi 11 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA İralı, A. E. (2023). Sanal Gerçeklik Gözlüğü Reklamlarına Yönelik Bir İçerik ve Duygu Analizi Çalışması: Quest 2 Örneği. TRT Akademi, 8(17), 218-245. https://doi.org/10.37679/trta.1207899