Derleme
BibTex RIS Kaynak Göster

The Relationship of Fat Taste Sense with Obesity

Yıl 2021, Cilt: 5 Sayı: 3, 351 - 357, 30.12.2021
https://doi.org/10.25048/tudod.986375

Öz

This review is aimed to explain the mechanism of perception of fat in the taste sense system. The prevalence of obesity is increasing in
developed and developing countries. The relationship between the sense of taste and this disease, which both negatively affect the quality
of life of individuals and increase the economic burden in all countries of the world, is among the subjects of interest. As a result of the
studies, it is thought that fats should be expressed as the sixth sense of taste, since they are perceived by taste receptors on the tongue such
as sweet, bitter, sour, salty and umami taste. Although it is not yet clear whether fat is the sixth taste, differences in fat taste sensitivity
may explain certain dietary behaviors, and it is stated that decreased sensitivity to fat taste is associated with increased fat consumption.
It is known that high-fat diet consumption can cause excessive fat and energy intake. Considering that changes in body mass index are
associated with oral fatty acid sensitivity, it is suggested that it may be associated with the development of obesity. In order to prevent and
treat obesity; it is of great importance to explain and clarify the mechanism of perception of fat in the taste sense system

Kaynakça

  • Marcus JB. Aging, Nutrition and Taste. Nutrition, Food Science and Culinary Perspectives for Aging Tastefully, 2019;4:116.
  • Tepper BJ, Barbarossa IT. Nutrients, 2020;12(1):155.
  • Karakuş SŞ. Factor Affecting Perception of Taste. Journal of Tourism and Gastronomy Studies, 2013;1:26-34.
  • Yang T, Zhang L, Xu G, Yang Z, Luo Y, Li Z, Zhong K, Shi B, Zhao L, Sun P. Investigating taste sensitivity, chemesthetic sensation and their relationship with emotion perception in Chinese young and older adults. Food Quality and Preference, 2021;96: 104406.
  • Kveton JF, Bartoshuk LM. Taste. Bailey BJ, Healy GB, Johnson JT, Jackler RK, Calhoun KH, Pillsbury HC, Tardy ME, Head and Neck Surgery-Otoaryngology. 2001. Philadelphia: Lippincott Williams&Wilkins. p.508-520.
  • Schiffman S, Miller E, Zimmerman I, Graham B, Erikson R. Taste Perception of Monosodium Glutamate (MSG) in Foods in Young and Elderly Subjects. Physiology & Behavior, 1994;56(2):265-275.
  • Snyderman CH. Tat bozuklukları. Cüneyt M. Alper, Eugene N, Myers David E. Eibling, Can Özşahin. Kulak Burun Boğazda Semptomdan Tanıya Tanıdan Tedaviye Algoritmik Yaklaşım. Adana, Nobel Tıp Kitabevleri. 2004.
  • Sonis ST, Faizo RC, Fang LS. Ağız Hastalıklarının Sırları. Hakkı Tanyeri. İstanbul, Nobel Tıp Kitabevleri. 2004.
  • Mattes RD. Taste, teleology and macronutrient intake. Current Opinion in Physiology, 2021;19:162–167.
  • Running CA, Craig BA, Mattes RD. Oleogustus: the unique taste of fat. Chem Senses, 2015;40:507-516.
  • Silvertown J. Çorba. In: Can Evren Topakbaş, Dinner With Darwin-Food, Drink and Evolution, 1th Edition, İstanbul, Kolektif Kitap, 2018, p. 76-77.
  • Running CA, Mattes RD. Different oral sensitivities to and sensations of short-, medium-, and long-chain fatty acids in humans. Am J Physiol Gastrointest Liver Physiol, 2014;307:G381-G389.
  • Liu D, Archer N, Duesing K, Hannan G, Keast R. Mechanism of fat taste perception: association with diet and obesity. Prog Lipid Res., 2016;63:41-49.
  • Moniri NH. Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders. Biochemical Pharmacology, 2016;110–111:1-15.
  • Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, Schioth HB. Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett., 2003;554(3): 381-388.
  • Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner Tİ, Neubig RR, Pin JP, Spedding M, Harmar AJ. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev., 2013;65(3):967-986.
  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med., 2005;11(1): 90-94.
  • Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch. Pharmacol., 2008;377(4–6):523-527.
  • Oh DY, Olefsky JM. Omega 3 fatty acids and GPR120 . Cell Metab., 2012;15(5):564-565.
  • Oh DY , Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, Powels MA, Disalvo J, Sinz C, Watkins SM, Armando AM, Chung H, Evans RM, Quehenberger O, Mcnelis J, Bogner-Strauss JG, Olefsky JM. Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med., 2014;20(8):942-947.
  • Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang Iy, Shan-Shi C, Kehrl JH. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy. PLoS One, 2014;9(6):e97957.
  • Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, Le Coutre J, Ninomıya Y, Damak S. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci., 2010;30(25):8376-8382.
  • Defazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Journal of Neuroscience, 2006;26(15):3971-3980.
  • Yoshida R, Shigemura N, Sanematsu K, Yasumatsu K, İshizuka S, Yuzo Ninomiya. Taste responsiveness of fungiform taste cells with action potentials. J. Neurophysiol., 2006;96:3088–3095.
  • Tomchik SM, Berg S, Kim JW, Chaudhari N, Roper, SD. Breadth of tuning and taste coding in mammalian taste buds. J. Neurosci., 2007;27:10840–10848.
  • Calvo SC, Egan J. The endocrinology of taste receptors. Nat Rev Endocrinol, 2015;11:213–227.
  • Sözlü S, Gökkurt YÇ, Karabudak E. Tat Reseptörlerinde Tek Nükleotid Gen Polimorfizmi, Besin Tercihi ve Sağlık Arasındaki İlişki. Cumhuriyet Üniv. Sağ. Bil. Enst. Derg., 2020;(5)3:219-234.
  • Mennella JA, Pepino MY, Reed DR. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics, 2005;115:e216-22.
  • Khan AS, Murtaza B, Hichami A, Khan NA. A cross-talk between fat and bitter taste modalities. Biochimie, 2019;159:3-8.
  • Keast RS, Costanzo A. Is fat the sixth taste primary? Evidence and implications. Flavour, 2015;4:5.
  • Ma X, Bacci S, Mlynarskii W, Gottardo L, Soccio T, Menzaghi C, İori E, Lager RA, Shroff AR, Gervino EV, Nesto RW, Johnstone MT, Abumrad NA, Avogaro A, Trischitta V, Doria A. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum Mol Genet., 2004;13:2197-205.
  • Cox DN, Hendrie GA, Carty D. Sensitivity, hedonics and preferences for basic tastes and fat amongst adults and children of differing weight status: A comprehensive review. Food Quality and Preference, 2016;48:359-367.
  • Stewart JE, Feinle-Bısset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. British journal of nutrition, 2010;104:145-152.
  • Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clinical nutrition, 2011;30:838-844.
  • Loper HB, La Sala M , Dotson C, Steinle N. Taste perception, associated hormonal modulation, and nutrient intake. Nutr Rev., 2015;73:83-91.
  • Richards P, Thornberry NA, Pinto S. The gut–brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Molecular Metabolism. 2021;46:101175.
  • Holst JJ. The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism Clinical and Experimental, 2019;96:46-55.
  • Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nature Reviews Endocrinology, 2019;15(4):226-237.
  • Meek CL, Lewis HB, Reimann F, Gribble FM, Park AJ. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides, 2016;77:28-37.
  • Furness JB. The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology & Hepatology, 2012;9(5):286-294.
  • Yoo BB, Mazmanian SK. The enteric network: interactions between the immune and nervous systems of the gut. Immunity, 2017;46(6):910-926.
  • Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience: Basic & Clinical, 2000;85(1–3):1-17.
  • Canning BJ, Mori N, MAZZONE SB. Vagal afferent nerves regulating the cough reflex. Respiratory Physiology & Neurobiology, 2006;152(3):223-242.
  • Tränkner D, Hahne N, Sugino K, Hoon MA, Zuker C. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proceedings of the National Academy of Sciences of the United States of America, 2014;111(31):11515-11520.
  • Rüttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology, 2009;150(3):1174-1181.
  • Coleridge HM, Coleridge JCG. Reflexes evoked from tracheobronchial tree and lungs. Comprehensive Physiology. 2011.
  • Waise TMZ, Dranse HJ, Lam TKT. The metabolic role of vagal afferent innervation. Nature Reviews Gastroenterology & Hepatology, 2018;15(10):625-636.
  • Bai L, Mesgarzadeh S, Ramesh Ks, Huey EL, Liu Y, Gray LA. Genetic identification of vagal sensory neurons that control feding. Cell, 2019;179(5):1129-1143.
  • Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell, 2020;181(3):574-589.
  • Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. An atlas of vagal sensory neurons and their molecular specialization. Cell Reports, 2019;27(8):2508-2523.
  • Ahmed K, Penney N, Darzi. Taste Changes after Bariatric Surgery: a Systematic Review. Obes Surg., 2018;28:3321–3332.
  • Wang GJ, Volkow ND, Logan J. Brain dopamine and obesity. Lancet. 2001;357:354–7.
  • Rao RS. Bariatric Surgery and the Central Nervous System. Obes Surg., 2012;22:967–978.
  • Swinburn BA, Sacks G, Hall KD. The global obesity pandemic: shaped by global drivers and local environments. Lancet, 2011;378:804‐814.
  • Newman LP, Bolhuis DP, Torres SJ, Keast RSJ. Dietary fat restriction increases fat taste sensitivity in people with obesity. Obesity. 2016;24(2):328-334.
  • Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev., 2012;13:43–56.
  • Besnard P. Lipids and obesity: Also a matter of taste?. Rev Endocr Metab Disord., 2016;17:159–170.
  • Öztürk-Duran EE, Dikmen D. Obezitede Tat Duyusunun Etkisi: Yağ Algısı. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 2018;6(5):550-556.
  • Thorpe KE, Allen L, Joski P. The role of chronic disease, obesity, and Improved treatment and detection in accounting for the rise in healthcare spending between 1987 and 2011. Appl Health Econ Health, 2015;13:381-387.
  • Martínez-Ruiz NR, López-Díaz JA, Wall-Medrano A, Jiménez-Castro JA, Angulo O ET. Oral fat perception is related with body mass index, preference and consumption of high-fat foods. PhysiolBehav., 2014;129:36-42.
  • Brown RC, Cooke RM, Gray AR. Oral Fatty Acid Sensitivity among Obesity Resistant and Obesity Susceptible Individuals. J Clin Nutr Diet., 2016;1:7.
  • Vignini A, Borroni F, Sabbatinelli J, Pugnaloni S, Alia S, Taus M, Ferrante L, Mazzanti L, Fabri M. "General Decrease of Taste Sensitivity Is Related to Increase of BMI: A Simple Method to Monitor Eating Behavior". Disease Markers, Article ID 2978026, 2019, p. 8.
  • Chale-Rush A, Burgess JR, Mattes RD. Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem. Senses, 2007;32(5):423–431.
  • Newman L, Keast R. The test retest reliability of fatty acid taste threshold. Chemosens Percept, 2013;6(2):70–77.
  • Gilbertson TA, Khan NA. Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges. Prog Lipid Res., 2014;53:82–92.
  • De Araujo İE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci, 2004;24(12):3086–3093.
  • Galindo MM, Voigt N, Stein J, Van Lengerich J, Raguse JD, Hofmann T, Meyerhof W, Behrens M. G protein-coupled receptors in human fat taste perception. Chem Senses, 2012;37(2):123–139.

Yağların Tat Duyusunun Obezite ile İlişkisi

Yıl 2021, Cilt: 5 Sayı: 3, 351 - 357, 30.12.2021
https://doi.org/10.25048/tudod.986375

Öz

Bu derleme, tat duyusu sisteminde yağın algılanma mekanizmasını açıklamayı amaçlamaktadır. Obezitenin gelişmiş ve gelişmekte
olan ülkelerde görülme sıklığı giderek artmaktadır. Hem bireylerin yaşam kalitesini olumsuz etkileyen hem de tedavisi tüm dünya
ülkelerinde ekonomik yükü artıran bu hastalık ile tat duyusunun ilişkisi ilgi çeken konular arasında yer almaktadır. Yapılan çalışmalar
sonucunda yağların tatlı, acı, ekşi, tuzlu ve umami tat gibi dil üzerinde tat reseptörleri ile algılanması sebebiyle altıncı tat duyusu olarak
ifade edilmesi gerektiği düşünülmektedir. Yağın altıncı tat olup olmadığı henüz kesinleşmemekle birlikte yağ tat duyarlılığındaki
farklılıklar, belirli beslenme davranışlarını açıklayabilmekte ve yağ tadına karşı azalan duyarlılığın artan yağ tüketimi ile ilişkili olduğu
belirtilmektedir. Yüksek yağlı diyet tüketiminin aşırı yağ ve enerji alımına sebep olabileceği bilinmektedir. Beden kütle indeksindeki
değişikliklerin oral yağ asidi duyarlılığı ile bağlantılı olduğu göz önüne alınırsa obezite gelişimiyle ilişkili olabileceği öne sürülmektedir.
Obezitenin önlenmesi ve tedavi edilebilmesi için; tat duyu sisteminde yağın algılanma mekanizmasının açıklanması ve netleştirilmesi
büyük önem taşımaktadır.

Kaynakça

  • Marcus JB. Aging, Nutrition and Taste. Nutrition, Food Science and Culinary Perspectives for Aging Tastefully, 2019;4:116.
  • Tepper BJ, Barbarossa IT. Nutrients, 2020;12(1):155.
  • Karakuş SŞ. Factor Affecting Perception of Taste. Journal of Tourism and Gastronomy Studies, 2013;1:26-34.
  • Yang T, Zhang L, Xu G, Yang Z, Luo Y, Li Z, Zhong K, Shi B, Zhao L, Sun P. Investigating taste sensitivity, chemesthetic sensation and their relationship with emotion perception in Chinese young and older adults. Food Quality and Preference, 2021;96: 104406.
  • Kveton JF, Bartoshuk LM. Taste. Bailey BJ, Healy GB, Johnson JT, Jackler RK, Calhoun KH, Pillsbury HC, Tardy ME, Head and Neck Surgery-Otoaryngology. 2001. Philadelphia: Lippincott Williams&Wilkins. p.508-520.
  • Schiffman S, Miller E, Zimmerman I, Graham B, Erikson R. Taste Perception of Monosodium Glutamate (MSG) in Foods in Young and Elderly Subjects. Physiology & Behavior, 1994;56(2):265-275.
  • Snyderman CH. Tat bozuklukları. Cüneyt M. Alper, Eugene N, Myers David E. Eibling, Can Özşahin. Kulak Burun Boğazda Semptomdan Tanıya Tanıdan Tedaviye Algoritmik Yaklaşım. Adana, Nobel Tıp Kitabevleri. 2004.
  • Sonis ST, Faizo RC, Fang LS. Ağız Hastalıklarının Sırları. Hakkı Tanyeri. İstanbul, Nobel Tıp Kitabevleri. 2004.
  • Mattes RD. Taste, teleology and macronutrient intake. Current Opinion in Physiology, 2021;19:162–167.
  • Running CA, Craig BA, Mattes RD. Oleogustus: the unique taste of fat. Chem Senses, 2015;40:507-516.
  • Silvertown J. Çorba. In: Can Evren Topakbaş, Dinner With Darwin-Food, Drink and Evolution, 1th Edition, İstanbul, Kolektif Kitap, 2018, p. 76-77.
  • Running CA, Mattes RD. Different oral sensitivities to and sensations of short-, medium-, and long-chain fatty acids in humans. Am J Physiol Gastrointest Liver Physiol, 2014;307:G381-G389.
  • Liu D, Archer N, Duesing K, Hannan G, Keast R. Mechanism of fat taste perception: association with diet and obesity. Prog Lipid Res., 2016;63:41-49.
  • Moniri NH. Free-fatty acid receptor-4 (GPR120): Cellular and molecular function and its role in metabolic disorders. Biochemical Pharmacology, 2016;110–111:1-15.
  • Fredriksson R, Hoglund PJ, Gloriam DE, Lagerstrom MC, Schioth HB. Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett., 2003;554(3): 381-388.
  • Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner Tİ, Neubig RR, Pin JP, Spedding M, Harmar AJ. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol. Rev., 2013;65(3):967-986.
  • Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med., 2005;11(1): 90-94.
  • Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G. Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch. Pharmacol., 2008;377(4–6):523-527.
  • Oh DY, Olefsky JM. Omega 3 fatty acids and GPR120 . Cell Metab., 2012;15(5):564-565.
  • Oh DY , Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, Powels MA, Disalvo J, Sinz C, Watkins SM, Armando AM, Chung H, Evans RM, Quehenberger O, Mcnelis J, Bogner-Strauss JG, Olefsky JM. Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med., 2014;20(8):942-947.
  • Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang Iy, Shan-Shi C, Kehrl JH. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy. PLoS One, 2014;9(6):e97957.
  • Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, Le Coutre J, Ninomıya Y, Damak S. Taste preference for fatty acids is mediated by GPR40 and GPR120. J. Neurosci., 2010;30(25):8376-8382.
  • Defazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, Chaudhari N. Journal of Neuroscience, 2006;26(15):3971-3980.
  • Yoshida R, Shigemura N, Sanematsu K, Yasumatsu K, İshizuka S, Yuzo Ninomiya. Taste responsiveness of fungiform taste cells with action potentials. J. Neurophysiol., 2006;96:3088–3095.
  • Tomchik SM, Berg S, Kim JW, Chaudhari N, Roper, SD. Breadth of tuning and taste coding in mammalian taste buds. J. Neurosci., 2007;27:10840–10848.
  • Calvo SC, Egan J. The endocrinology of taste receptors. Nat Rev Endocrinol, 2015;11:213–227.
  • Sözlü S, Gökkurt YÇ, Karabudak E. Tat Reseptörlerinde Tek Nükleotid Gen Polimorfizmi, Besin Tercihi ve Sağlık Arasındaki İlişki. Cumhuriyet Üniv. Sağ. Bil. Enst. Derg., 2020;(5)3:219-234.
  • Mennella JA, Pepino MY, Reed DR. Genetic and environmental determinants of bitter perception and sweet preferences. Pediatrics, 2005;115:e216-22.
  • Khan AS, Murtaza B, Hichami A, Khan NA. A cross-talk between fat and bitter taste modalities. Biochimie, 2019;159:3-8.
  • Keast RS, Costanzo A. Is fat the sixth taste primary? Evidence and implications. Flavour, 2015;4:5.
  • Ma X, Bacci S, Mlynarskii W, Gottardo L, Soccio T, Menzaghi C, İori E, Lager RA, Shroff AR, Gervino EV, Nesto RW, Johnstone MT, Abumrad NA, Avogaro A, Trischitta V, Doria A. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum Mol Genet., 2004;13:2197-205.
  • Cox DN, Hendrie GA, Carty D. Sensitivity, hedonics and preferences for basic tastes and fat amongst adults and children of differing weight status: A comprehensive review. Food Quality and Preference, 2016;48:359-367.
  • Stewart JE, Feinle-Bısset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. British journal of nutrition, 2010;104:145-152.
  • Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clinical nutrition, 2011;30:838-844.
  • Loper HB, La Sala M , Dotson C, Steinle N. Taste perception, associated hormonal modulation, and nutrient intake. Nutr Rev., 2015;73:83-91.
  • Richards P, Thornberry NA, Pinto S. The gut–brain axis: Identifying new therapeutic approaches for type 2 diabetes, obesity, and related disorders. Molecular Metabolism. 2021;46:101175.
  • Holst JJ. The incretin system in healthy humans: the role of GIP and GLP-1. Metabolism Clinical and Experimental, 2019;96:46-55.
  • Gribble FM, Reimann F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nature Reviews Endocrinology, 2019;15(4):226-237.
  • Meek CL, Lewis HB, Reimann F, Gribble FM, Park AJ. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides, 2016;77:28-37.
  • Furness JB. The enteric nervous system and neurogastroenterology. Nature Reviews Gastroenterology & Hepatology, 2012;9(5):286-294.
  • Yoo BB, Mazmanian SK. The enteric network: interactions between the immune and nervous systems of the gut. Immunity, 2017;46(6):910-926.
  • Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience: Basic & Clinical, 2000;85(1–3):1-17.
  • Canning BJ, Mori N, MAZZONE SB. Vagal afferent nerves regulating the cough reflex. Respiratory Physiology & Neurobiology, 2006;152(3):223-242.
  • Tränkner D, Hahne N, Sugino K, Hoon MA, Zuker C. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. Proceedings of the National Academy of Sciences of the United States of America, 2014;111(31):11515-11520.
  • Rüttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W. Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology, 2009;150(3):1174-1181.
  • Coleridge HM, Coleridge JCG. Reflexes evoked from tracheobronchial tree and lungs. Comprehensive Physiology. 2011.
  • Waise TMZ, Dranse HJ, Lam TKT. The metabolic role of vagal afferent innervation. Nature Reviews Gastroenterology & Hepatology, 2018;15(10):625-636.
  • Bai L, Mesgarzadeh S, Ramesh Ks, Huey EL, Liu Y, Gray LA. Genetic identification of vagal sensory neurons that control feding. Cell, 2019;179(5):1129-1143.
  • Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell, 2020;181(3):574-589.
  • Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. An atlas of vagal sensory neurons and their molecular specialization. Cell Reports, 2019;27(8):2508-2523.
  • Ahmed K, Penney N, Darzi. Taste Changes after Bariatric Surgery: a Systematic Review. Obes Surg., 2018;28:3321–3332.
  • Wang GJ, Volkow ND, Logan J. Brain dopamine and obesity. Lancet. 2001;357:354–7.
  • Rao RS. Bariatric Surgery and the Central Nervous System. Obes Surg., 2012;22:967–978.
  • Swinburn BA, Sacks G, Hall KD. The global obesity pandemic: shaped by global drivers and local environments. Lancet, 2011;378:804‐814.
  • Newman LP, Bolhuis DP, Torres SJ, Keast RSJ. Dietary fat restriction increases fat taste sensitivity in people with obesity. Obesity. 2016;24(2):328-334.
  • Carnell S, Gibson C, Benson L, Ochner CN, Geliebter A. Neuroimaging and obesity: current knowledge and future directions. Obes Rev., 2012;13:43–56.
  • Besnard P. Lipids and obesity: Also a matter of taste?. Rev Endocr Metab Disord., 2016;17:159–170.
  • Öztürk-Duran EE, Dikmen D. Obezitede Tat Duyusunun Etkisi: Yağ Algısı. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 2018;6(5):550-556.
  • Thorpe KE, Allen L, Joski P. The role of chronic disease, obesity, and Improved treatment and detection in accounting for the rise in healthcare spending between 1987 and 2011. Appl Health Econ Health, 2015;13:381-387.
  • Martínez-Ruiz NR, López-Díaz JA, Wall-Medrano A, Jiménez-Castro JA, Angulo O ET. Oral fat perception is related with body mass index, preference and consumption of high-fat foods. PhysiolBehav., 2014;129:36-42.
  • Brown RC, Cooke RM, Gray AR. Oral Fatty Acid Sensitivity among Obesity Resistant and Obesity Susceptible Individuals. J Clin Nutr Diet., 2016;1:7.
  • Vignini A, Borroni F, Sabbatinelli J, Pugnaloni S, Alia S, Taus M, Ferrante L, Mazzanti L, Fabri M. "General Decrease of Taste Sensitivity Is Related to Increase of BMI: A Simple Method to Monitor Eating Behavior". Disease Markers, Article ID 2978026, 2019, p. 8.
  • Chale-Rush A, Burgess JR, Mattes RD. Evidence for human orosensory (taste?) sensitivity to free fatty acids. Chem. Senses, 2007;32(5):423–431.
  • Newman L, Keast R. The test retest reliability of fatty acid taste threshold. Chemosens Percept, 2013;6(2):70–77.
  • Gilbertson TA, Khan NA. Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges. Prog Lipid Res., 2014;53:82–92.
  • De Araujo İE, Rolls ET. Representation in the human brain of food texture and oral fat. J Neurosci, 2004;24(12):3086–3093.
  • Galindo MM, Voigt N, Stein J, Van Lengerich J, Raguse JD, Hofmann T, Meyerhof W, Behrens M. G protein-coupled receptors in human fat taste perception. Chem Senses, 2012;37(2):123–139.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme
Yazarlar

Beyza Kaldırım 0000-0002-9374-0213

Yeliz Vergi 0000-0002-3358-3332

Yayımlanma Tarihi 30 Aralık 2021
Kabul Tarihi 16 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 5 Sayı: 3

Kaynak Göster

APA Kaldırım, B., & Vergi, Y. (2021). Yağların Tat Duyusunun Obezite ile İlişkisi. Türkiye Diyabet Ve Obezite Dergisi, 5(3), 351-357. https://doi.org/10.25048/tudod.986375
AMA Kaldırım B, Vergi Y. Yağların Tat Duyusunun Obezite ile İlişkisi. Turk J Diab Obes. Aralık 2021;5(3):351-357. doi:10.25048/tudod.986375
Chicago Kaldırım, Beyza, ve Yeliz Vergi. “Yağların Tat Duyusunun Obezite Ile İlişkisi”. Türkiye Diyabet Ve Obezite Dergisi 5, sy. 3 (Aralık 2021): 351-57. https://doi.org/10.25048/tudod.986375.
EndNote Kaldırım B, Vergi Y (01 Aralık 2021) Yağların Tat Duyusunun Obezite ile İlişkisi. Türkiye Diyabet ve Obezite Dergisi 5 3 351–357.
IEEE B. Kaldırım ve Y. Vergi, “Yağların Tat Duyusunun Obezite ile İlişkisi”, Turk J Diab Obes, c. 5, sy. 3, ss. 351–357, 2021, doi: 10.25048/tudod.986375.
ISNAD Kaldırım, Beyza - Vergi, Yeliz. “Yağların Tat Duyusunun Obezite Ile İlişkisi”. Türkiye Diyabet ve Obezite Dergisi 5/3 (Aralık 2021), 351-357. https://doi.org/10.25048/tudod.986375.
JAMA Kaldırım B, Vergi Y. Yağların Tat Duyusunun Obezite ile İlişkisi. Turk J Diab Obes. 2021;5:351–357.
MLA Kaldırım, Beyza ve Yeliz Vergi. “Yağların Tat Duyusunun Obezite Ile İlişkisi”. Türkiye Diyabet Ve Obezite Dergisi, c. 5, sy. 3, 2021, ss. 351-7, doi:10.25048/tudod.986375.
Vancouver Kaldırım B, Vergi Y. Yağların Tat Duyusunun Obezite ile İlişkisi. Turk J Diab Obes. 2021;5(3):351-7.

Zonguldak Bülent Ecevit Üniversitesi Obezite ve Diyabet Uygulama ve Araştırma Merkezi’nin bilimsel yayım organıdır.

Web: https://obdm.beun.edu.tr/  Twitter: https://twitter.com/obezite_diyabet     Instagram: https://www.instagram.com/zbeuobezitediyabet/