Using the Conformable Fractional Derivative to Model the Capacitance Variation of XLPE During a Prolonged Cable Water Absorption Test
Yıl 2025,
Cilt: 26 Sayı: 2, 61 - 75, 31.12.2025
Lütfi Ulusoy
,
Reşat Mutlu
,
Avşin Öztaş
,
Sinem Şahin
,
Fatih Yerişenoğlu
Öz
The study of water diffusion in cables has garnered significant attention due to its impact on the reliability and longevity of cable materials in diverse engineering applications. Moisture intrusion in a cable can result in changes in mechanical and electrical properties, making it essential to understand the underlying diffusion mechanisms. Traditional models often oversimplify this process, assuming homogeneity in time and space, and therefore fail to account for the nuanced behaviours observed in practice. This study addresses the Conformable fractional derivative approach to model the insulator capacitance of the power cable wrestling from the diffusion behaviour of water within cables during the water absorption test. The capacitance of the cable insulator due to water diffusion is evaluated as a process dependent on time. Equivalent capacitance is expressed as a power function of time. The accuracy, flexibility, and advantages of the conformable fractional derivative in modelling are implied. The accuracy of the model has been tested with experimental data. The fractional derivative offers a new perspective for better understanding and modelling the effect of the water absorption process on the insulator capacitance in power cable engineering applications.
Etik Beyan
This study has been supported through the project UPN-2404 funded by the research and development center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.
Destekleyen Kurum
Development Center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.
Teşekkür
The researchers are thankful to Hakan Çanta, Metin Yurtsever, and Tufan Alpözgen for their assistance
Kaynakça
-
Abdeljawad, T. (2015). On conformable fractional
calculus. Journal of computational and applied
mathematics, 279, 57-66.
-
Al-Arainy, A., Qureshi, M., Malik, N., Saati, M., Al-
Nather, O., & Anam, S. (2008). Diagnostic
comparison of water tree growth in XLPE insulated
power cables produced in GCC countries. Paper
presented at the The International Conference on
Electrical Engineering.
-
Atangana, A., & Bildik, N. (2013). The use of fractional
order derivative to predict the groundwater flow.
Using Conformable Fractional Derivative to Model the Capacitance 73
Variation of XLPE during a Prolonged Cable Water Absorption Test
Mathematical Problems in Engineering, 2013(1),
543026.
-
Badmera, V., & Patel, R. (2017). Electrical
characterization of XLPE cable using accelerated
water absorption test on medium voltage power
cable and partial discharge test on power cable
with termination defects. Paper presented at the
2017 Innovations in Power and Advanced
Computing Technologies (i-PACT).
-
Baleanu, D., Agheli, B., & Al Qurashi, M. (2016).
Fractional advection differential equation within
Caputo and Caputo-Fabrizio derivatives, Advances
Mech. Engin, 8, 12.
-
Bayrak, M. A., Demir, A., & Ozbilge, E. (2023). A
novel approach for the solution of fractional
diffusion problems with conformable derivative.
Numerical Methods for Partial Differential
Equations, 39(3), 1870-1887.
-
Beyer, G. (2021). The global cable industry: materials,
markets, products: John Wiley & Sons.
Bildik, N., & Deniz, S. (2019). A new fractional
analysis on the polluted lakes system. Chaos,
Solitons & Fractals, 122, 17-24.
-
Blazek, J. (2015). Computational fluid dynamics:
principles and applications: Butterworth-
Heinemann.
-
Bohaienko, V., & Bulavatsky, V. (2018). Mathematical
modeling of solutes migration under the conditions
of groundwater filtration by the model with the k-
Caputo fractional derivative. Fractal and
Fractional, 2(4), 28.
-
Elwakil, A. S. (2010). Fractional-order circuits and
systems: An emerging interdisciplinary research
area. IEEE Circuits and Systems Magazine, 10(4),
40-50.
-
Freeborn, T. J., Elwakil, A. S., & Allagui, A. (2018).
Supercapacitor fractional-order model discharging
from polynomial time-varying currents. Paper
presented at the 2018 IEEE International
Symposium on Circuits and Systems (ISCAS).
Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2013).
Measurement of supercapacitor fractional-order
model parameters from voltage-excited step
response. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 3(3), 367-376.
-
Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015).
Fractional-order models of supercapacitors,
batteries and fuel cells: a survey. Materials for
Renewable and Sustainable Energy, 4, 1-7.
-
Furuheim, K. M., Nilsson, S., Hvidsten, S., & Hellesø,
S. M. (2013). Water Diffusion Barrier–A Novel
Design for High Voltage Subsea Cables. Paper
presented at the Proceedings of the Nordic
Insulation Symposium.
-
Gao, C., & Zhou, C. (2019). Moisture absorption and
cyclic absorption–desorption characters of fibrereinforced
epoxy composites. Journal of materials
science, 54(11), 8289-8301.
-
Gutierrez, R. E., Rosário, J. M., & Tenreiro Machado,
J. (2010). Fractional order calculus: basic concepts
and engineering applications. Mathematical
Problems in Engineering, 2010(1), 375858.
-
Gülkaç, V. (2016). A Method of Finding Source
Function for Inverse Diffusion Problem with Time‐
Fractional Derivative. Advances in Mathematical
Physics, 2016(1), 6470949.
-
Helleso, S., Henoen, V., & Hvidsten, S. (2008).
Simulation of water diffusion in polymeric cables
using finite element methods. Paper presented at the
Conference Record of the 2008 IEEE International
Symposium on Electrical Insulation.
-
Hellesø, S., Hvidsten, S., Balog, G., & Furuheim, K.
(2011). Calculation of water ingress in a HV subsea
XLPE cable with a layered water barrier sheath
system. Journal of Applied Polymer Science,
121(4), 2127-2133.
-
Hidalgo-Reyes, J., Gómez-Aguilar, J. F., Escobar-
Jiménez, R. F., Alvarado-Martínez, V. M., &
López-López, M. (2019).
Classical and fractionalorder
modeling of equivalent electrical circuits for
supercapacitors and batteries, energy management
strategies for hybrid systems and methods for the
state of charge estimation: A state of the art review.
Microelectronics Journal, 85, 109-128.
-
IEEE Recommended Practice for Marine Cable for Use
on Shipboard and Fixed or Floating Facilities.
(2021). In (pp. 1580-2021).
-
Karakulak, E., & Mutlu, R. (2023). Spice Model of a
Capacitor Modelled Using Conformal Fractional
Order Derivative and its Usage in Simulation of a
Parallel RL-C_∝ Circuit. Trakya Üniversitesi
Mühendislik Bilimleri Dergisi, 24(2), 49-56.
-
Karhan, M., Cakir, M. F., & Ugur, M. (2020). Analysis
of electric field and potential distribution of
experimental setup for initiating and growing
vented type water trees using finite element method.
Journal of Science and Arts, 20(3), 755-766.
-
Karhan, M., Çakır, M. F., & Uğur, M. (2021). A new
approach to the analysis of water treeing using
feature extraction of vented type water tree images.
Journal of Electrical Engineering & Technology,
16(3), 1241-1252.
-
Karhan, M., Uzunoğlu, C. P., ISSI, F., & UĞUR, M.
(2017). Segmentation of Vented Water Trees in
Microscopic Images Using Image Processing
Techniques. Paper presented at the International
Scientific Conference; ISCFEC: Gabrovo,
Bulgaria.
-
Karhan, M., Yılmaz, A. E., & Uğur, M. (2017).
Investigation the effect of solution conductivity on
the growth rate and shape of water trees observed in
distribution cables. IU-Journal of Electrical &
Electronics Engineering, 17(2), 3445-3451.
-
Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M.
(2014). A new definition of fractional derivative.
Journal of computational and applied mathematics,
264, 65-70.
-
Kim, M., Mert Coskun, O., Ordu, S., & Mutlu, R.
(2024). Modeling Pollutant Diffusion in the Ground
Using Conformable Fractional Derivative in
Spherical Coordinates with Complete Symmetry.
Symmetry, 16(10), 1358.
-
Kopka, R. (2017). Estimation of supercapacitor energy
storage based on fractional differential equations.
Nanoscale research letters, 12(1), 636.
Kothari, K., Mehta, U. V., & Prasad, R. (2019).
Fractional-order system modeling and its
applications. Journal of Engineering Science and
Technology Review, 12(6), 1-10.
-
Lewandowski, M., & Orzyłowski, M. (2017).
Fractional-order models: The case study of the
supercapacitor capacitance measurement. Bulletin
of the Polish Academy of Sciences Technical
Sciences, 449-457-449-457.
-
Martínez, L., Rosales, J., Carreño, C., & Lozano, J. M.
(2018). Electrical circuits described by fractional
conformable derivative. International Journal of
Circuit Theory and Applications, 46(5), 1091-1100.
-
Mirza, I. A., Akram, M. S., Shah, N. A., Akhtar, S., &
Muneer, M. (2021). Study of one‐dimensional
contaminant transport in soils using fractional
calculus. Mathematical Methods in the Applied
Sciences, 44(8), 6839-6856.
Uzun Süreli Bir Kablo Su Emme Testi Sırasında XLPE'nin Kapasitans Değişimini Modellemek İçin Uyumlu Kesirli Türev Kullanımı
Yıl 2025,
Cilt: 26 Sayı: 2, 61 - 75, 31.12.2025
Lütfi Ulusoy
,
Reşat Mutlu
,
Avşin Öztaş
,
Sinem Şahin
,
Fatih Yerişenoğlu
Öz
Kablolardaki su difüzyonu çalışmaları, çeşitli mühendislik uygulamalarında kablo malzemelerinin güvenilirliği ve ömrü üzerindeki etkisi nedeniyle önemli ölçüde ilgi görmektedir. Bir kabloya nem girişi, mekanik ve elektriksel özelliklerde değişimlere neden olabilir; bu da altta yatan difüzyon mekanizmalarının anlaşılmasını hayati kılar. Geleneksel modeller bu süreci genellikle zaman ve uzayda homojenlik varsayarak basitleştirir ve dolayısıyla uygulamada gözlemlenen karmaşık davranışları hesaba katmakta yetersiz kalır. Bu çalışma, kablolarda su emme testi sırasında meydana gelen difüzyon davranışından kaynaklanan yalıtkan kapasitansını modellemek için Uyumlu kesirli türev yaklaşımını ele almaktadır. Su difüzyonuna bağlı olarak kablo yalıtkanının kapasitansı zamana bağlı bir süreç olarak değerlendirilmiştir. Eşdeğer kapasitans zamanın bir üs fonksiyonu olarak ifade edilmiştir. Uyumlu kesirli türevin modellemedeki doğruluğu, esnekliği ve avantajları vurgulanmaktadır. Modelin doğruluğu, deneysel verilerle test edilmiştir. Kesirli türev yaklaşımı, güç kablosu mühendisliği uygulamalarında su emme sürecinin yalıtkan kapasitansına etkisini daha iyi anlamak ve modellemek için yeni bir bakış açısı sunmaktadır.
Kaynakça
-
Abdeljawad, T. (2015). On conformable fractional
calculus. Journal of computational and applied
mathematics, 279, 57-66.
-
Al-Arainy, A., Qureshi, M., Malik, N., Saati, M., Al-
Nather, O., & Anam, S. (2008). Diagnostic
comparison of water tree growth in XLPE insulated
power cables produced in GCC countries. Paper
presented at the The International Conference on
Electrical Engineering.
-
Atangana, A., & Bildik, N. (2013). The use of fractional
order derivative to predict the groundwater flow.
Using Conformable Fractional Derivative to Model the Capacitance 73
Variation of XLPE during a Prolonged Cable Water Absorption Test
Mathematical Problems in Engineering, 2013(1),
543026.
-
Badmera, V., & Patel, R. (2017). Electrical
characterization of XLPE cable using accelerated
water absorption test on medium voltage power
cable and partial discharge test on power cable
with termination defects. Paper presented at the
2017 Innovations in Power and Advanced
Computing Technologies (i-PACT).
-
Baleanu, D., Agheli, B., & Al Qurashi, M. (2016).
Fractional advection differential equation within
Caputo and Caputo-Fabrizio derivatives, Advances
Mech. Engin, 8, 12.
-
Bayrak, M. A., Demir, A., & Ozbilge, E. (2023). A
novel approach for the solution of fractional
diffusion problems with conformable derivative.
Numerical Methods for Partial Differential
Equations, 39(3), 1870-1887.
-
Beyer, G. (2021). The global cable industry: materials,
markets, products: John Wiley & Sons.
Bildik, N., & Deniz, S. (2019). A new fractional
analysis on the polluted lakes system. Chaos,
Solitons & Fractals, 122, 17-24.
-
Blazek, J. (2015). Computational fluid dynamics:
principles and applications: Butterworth-
Heinemann.
-
Bohaienko, V., & Bulavatsky, V. (2018). Mathematical
modeling of solutes migration under the conditions
of groundwater filtration by the model with the k-
Caputo fractional derivative. Fractal and
Fractional, 2(4), 28.
-
Elwakil, A. S. (2010). Fractional-order circuits and
systems: An emerging interdisciplinary research
area. IEEE Circuits and Systems Magazine, 10(4),
40-50.
-
Freeborn, T. J., Elwakil, A. S., & Allagui, A. (2018).
Supercapacitor fractional-order model discharging
from polynomial time-varying currents. Paper
presented at the 2018 IEEE International
Symposium on Circuits and Systems (ISCAS).
Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2013).
Measurement of supercapacitor fractional-order
model parameters from voltage-excited step
response. IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, 3(3), 367-376.
-
Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015).
Fractional-order models of supercapacitors,
batteries and fuel cells: a survey. Materials for
Renewable and Sustainable Energy, 4, 1-7.
-
Furuheim, K. M., Nilsson, S., Hvidsten, S., & Hellesø,
S. M. (2013). Water Diffusion Barrier–A Novel
Design for High Voltage Subsea Cables. Paper
presented at the Proceedings of the Nordic
Insulation Symposium.
-
Gao, C., & Zhou, C. (2019). Moisture absorption and
cyclic absorption–desorption characters of fibrereinforced
epoxy composites. Journal of materials
science, 54(11), 8289-8301.
-
Gutierrez, R. E., Rosário, J. M., & Tenreiro Machado,
J. (2010). Fractional order calculus: basic concepts
and engineering applications. Mathematical
Problems in Engineering, 2010(1), 375858.
-
Gülkaç, V. (2016). A Method of Finding Source
Function for Inverse Diffusion Problem with Time‐
Fractional Derivative. Advances in Mathematical
Physics, 2016(1), 6470949.
-
Helleso, S., Henoen, V., & Hvidsten, S. (2008).
Simulation of water diffusion in polymeric cables
using finite element methods. Paper presented at the
Conference Record of the 2008 IEEE International
Symposium on Electrical Insulation.
-
Hellesø, S., Hvidsten, S., Balog, G., & Furuheim, K.
(2011). Calculation of water ingress in a HV subsea
XLPE cable with a layered water barrier sheath
system. Journal of Applied Polymer Science,
121(4), 2127-2133.
-
Hidalgo-Reyes, J., Gómez-Aguilar, J. F., Escobar-
Jiménez, R. F., Alvarado-Martínez, V. M., &
López-López, M. (2019).
Classical and fractionalorder
modeling of equivalent electrical circuits for
supercapacitors and batteries, energy management
strategies for hybrid systems and methods for the
state of charge estimation: A state of the art review.
Microelectronics Journal, 85, 109-128.
-
IEEE Recommended Practice for Marine Cable for Use
on Shipboard and Fixed or Floating Facilities.
(2021). In (pp. 1580-2021).
-
Karakulak, E., & Mutlu, R. (2023). Spice Model of a
Capacitor Modelled Using Conformal Fractional
Order Derivative and its Usage in Simulation of a
Parallel RL-C_∝ Circuit. Trakya Üniversitesi
Mühendislik Bilimleri Dergisi, 24(2), 49-56.
-
Karhan, M., Cakir, M. F., & Ugur, M. (2020). Analysis
of electric field and potential distribution of
experimental setup for initiating and growing
vented type water trees using finite element method.
Journal of Science and Arts, 20(3), 755-766.
-
Karhan, M., Çakır, M. F., & Uğur, M. (2021). A new
approach to the analysis of water treeing using
feature extraction of vented type water tree images.
Journal of Electrical Engineering & Technology,
16(3), 1241-1252.
-
Karhan, M., Uzunoğlu, C. P., ISSI, F., & UĞUR, M.
(2017). Segmentation of Vented Water Trees in
Microscopic Images Using Image Processing
Techniques. Paper presented at the International
Scientific Conference; ISCFEC: Gabrovo,
Bulgaria.
-
Karhan, M., Yılmaz, A. E., & Uğur, M. (2017).
Investigation the effect of solution conductivity on
the growth rate and shape of water trees observed in
distribution cables. IU-Journal of Electrical &
Electronics Engineering, 17(2), 3445-3451.
-
Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M.
(2014). A new definition of fractional derivative.
Journal of computational and applied mathematics,
264, 65-70.
-
Kim, M., Mert Coskun, O., Ordu, S., & Mutlu, R.
(2024). Modeling Pollutant Diffusion in the Ground
Using Conformable Fractional Derivative in
Spherical Coordinates with Complete Symmetry.
Symmetry, 16(10), 1358.
-
Kopka, R. (2017). Estimation of supercapacitor energy
storage based on fractional differential equations.
Nanoscale research letters, 12(1), 636.
Kothari, K., Mehta, U. V., & Prasad, R. (2019).
Fractional-order system modeling and its
applications. Journal of Engineering Science and
Technology Review, 12(6), 1-10.
-
Lewandowski, M., & Orzyłowski, M. (2017).
Fractional-order models: The case study of the
supercapacitor capacitance measurement. Bulletin
of the Polish Academy of Sciences Technical
Sciences, 449-457-449-457.
-
Martínez, L., Rosales, J., Carreño, C., & Lozano, J. M.
(2018). Electrical circuits described by fractional
conformable derivative. International Journal of
Circuit Theory and Applications, 46(5), 1091-1100.
-
Mirza, I. A., Akram, M. S., Shah, N. A., Akhtar, S., &
Muneer, M. (2021). Study of one‐dimensional
contaminant transport in soils using fractional
calculus. Mathematical Methods in the Applied
Sciences, 44(8), 6839-6856.