Araştırma Makalesi
BibTex RIS Kaynak Göster

Using the Conformable Fractional Derivative to Model the Capacitance Variation of XLPE During a Prolonged Cable Water Absorption Test

Yıl 2025, Cilt: 26 Sayı: 2, 61 - 75, 31.12.2025
https://doi.org/10.59314/tujes.1724085

Öz

The study of water diffusion in cables has garnered significant attention due to its impact on the reliability and longevity of cable materials in diverse engineering applications. Moisture intrusion in a cable can result in changes in mechanical and electrical properties, making it essential to understand the underlying diffusion mechanisms. Traditional models often oversimplify this process, assuming homogeneity in time and space, and therefore fail to account for the nuanced behaviours observed in practice. This study addresses the Conformable fractional derivative approach to model the insulator capacitance of the power cable wrestling from the diffusion behaviour of water within cables during the water absorption test. The capacitance of the cable insulator due to water diffusion is evaluated as a process dependent on time. Equivalent capacitance is expressed as a power function of time. The accuracy, flexibility, and advantages of the conformable fractional derivative in modelling are implied. The accuracy of the model has been tested with experimental data. The fractional derivative offers a new perspective for better understanding and modelling the effect of the water absorption process on the insulator capacitance in power cable engineering applications.

Etik Beyan

This study has been supported through the project UPN-2404 funded by the research and development center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.

Destekleyen Kurum

Development Center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.

Proje Numarası

UPN-2404

Teşekkür

The researchers are thankful to Hakan Çanta, Metin Yurtsever, and Tufan Alpözgen for their assistance

Kaynakça

  • Abdeljawad, T. (2015). On conformable fractional calculus. Journal of computational and applied mathematics, 279, 57-66.
  • Al-Arainy, A., Qureshi, M., Malik, N., Saati, M., Al- Nather, O., & Anam, S. (2008). Diagnostic comparison of water tree growth in XLPE insulated power cables produced in GCC countries. Paper presented at the The International Conference on Electrical Engineering.
  • Atangana, A., & Bildik, N. (2013). The use of fractional order derivative to predict the groundwater flow. Using Conformable Fractional Derivative to Model the Capacitance 73 Variation of XLPE during a Prolonged Cable Water Absorption Test Mathematical Problems in Engineering, 2013(1), 543026.
  • Badmera, V., & Patel, R. (2017). Electrical characterization of XLPE cable using accelerated water absorption test on medium voltage power cable and partial discharge test on power cable with termination defects. Paper presented at the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT).
  • Baleanu, D., Agheli, B., & Al Qurashi, M. (2016). Fractional advection differential equation within Caputo and Caputo-Fabrizio derivatives, Advances Mech. Engin, 8, 12.
  • Bayrak, M. A., Demir, A., & Ozbilge, E. (2023). A novel approach for the solution of fractional diffusion problems with conformable derivative. Numerical Methods for Partial Differential Equations, 39(3), 1870-1887.
  • Beyer, G. (2021). The global cable industry: materials, markets, products: John Wiley & Sons. Bildik, N., & Deniz, S. (2019). A new fractional analysis on the polluted lakes system. Chaos, Solitons & Fractals, 122, 17-24.
  • Blazek, J. (2015). Computational fluid dynamics: principles and applications: Butterworth- Heinemann.
  • Bohaienko, V., & Bulavatsky, V. (2018). Mathematical modeling of solutes migration under the conditions of groundwater filtration by the model with the k- Caputo fractional derivative. Fractal and Fractional, 2(4), 28.
  • Elwakil, A. S. (2010). Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits and Systems Magazine, 10(4), 40-50.
  • Freeborn, T. J., Elwakil, A. S., & Allagui, A. (2018). Supercapacitor fractional-order model discharging from polynomial time-varying currents. Paper presented at the 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2013). Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 367-376.
  • Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015). Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Materials for Renewable and Sustainable Energy, 4, 1-7.
  • Furuheim, K. M., Nilsson, S., Hvidsten, S., & Hellesø, S. M. (2013). Water Diffusion Barrier–A Novel Design for High Voltage Subsea Cables. Paper presented at the Proceedings of the Nordic Insulation Symposium.
  • Gao, C., & Zhou, C. (2019). Moisture absorption and cyclic absorption–desorption characters of fibrereinforced epoxy composites. Journal of materials science, 54(11), 8289-8301.
  • Gutierrez, R. E., Rosário, J. M., & Tenreiro Machado, J. (2010). Fractional order calculus: basic concepts and engineering applications. Mathematical Problems in Engineering, 2010(1), 375858.
  • Gülkaç, V. (2016). A Method of Finding Source Function for Inverse Diffusion Problem with Time‐ Fractional Derivative. Advances in Mathematical Physics, 2016(1), 6470949.
  • Helleso, S., Henoen, V., & Hvidsten, S. (2008). Simulation of water diffusion in polymeric cables using finite element methods. Paper presented at the Conference Record of the 2008 IEEE International Symposium on Electrical Insulation.
  • Hellesø, S., Hvidsten, S., Balog, G., & Furuheim, K. (2011). Calculation of water ingress in a HV subsea XLPE cable with a layered water barrier sheath system. Journal of Applied Polymer Science, 121(4), 2127-2133.
  • Hidalgo-Reyes, J., Gómez-Aguilar, J. F., Escobar- Jiménez, R. F., Alvarado-Martínez, V. M., & López-López, M. (2019). Classical and fractionalorder modeling of equivalent electrical circuits for supercapacitors and batteries, energy management strategies for hybrid systems and methods for the state of charge estimation: A state of the art review. Microelectronics Journal, 85, 109-128.
  • IEEE Recommended Practice for Marine Cable for Use on Shipboard and Fixed or Floating Facilities. (2021). In (pp. 1580-2021).
  • Karakulak, E., & Mutlu, R. (2023). Spice Model of a Capacitor Modelled Using Conformal Fractional Order Derivative and its Usage in Simulation of a Parallel RL-C_∝ Circuit. Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 24(2), 49-56.
  • Karhan, M., Cakir, M. F., & Ugur, M. (2020). Analysis of electric field and potential distribution of experimental setup for initiating and growing vented type water trees using finite element method. Journal of Science and Arts, 20(3), 755-766.
  • Karhan, M., Çakır, M. F., & Uğur, M. (2021). A new approach to the analysis of water treeing using feature extraction of vented type water tree images. Journal of Electrical Engineering & Technology, 16(3), 1241-1252.
  • Karhan, M., Uzunoğlu, C. P., ISSI, F., & UĞUR, M. (2017). Segmentation of Vented Water Trees in Microscopic Images Using Image Processing Techniques. Paper presented at the International Scientific Conference; ISCFEC: Gabrovo, Bulgaria.
  • Karhan, M., Yılmaz, A. E., & Uğur, M. (2017). Investigation the effect of solution conductivity on the growth rate and shape of water trees observed in distribution cables. IU-Journal of Electrical & Electronics Engineering, 17(2), 3445-3451.
  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of computational and applied mathematics, 264, 65-70.
  • Kim, M., Mert Coskun, O., Ordu, S., & Mutlu, R. (2024). Modeling Pollutant Diffusion in the Ground Using Conformable Fractional Derivative in Spherical Coordinates with Complete Symmetry. Symmetry, 16(10), 1358.
  • Kopka, R. (2017). Estimation of supercapacitor energy storage based on fractional differential equations. Nanoscale research letters, 12(1), 636. Kothari, K., Mehta, U. V., & Prasad, R. (2019). Fractional-order system modeling and its applications. Journal of Engineering Science and Technology Review, 12(6), 1-10.
  • Lewandowski, M., & Orzyłowski, M. (2017). Fractional-order models: The case study of the supercapacitor capacitance measurement. Bulletin of the Polish Academy of Sciences Technical Sciences, 449-457-449-457.
  • Martínez, L., Rosales, J., Carreño, C., & Lozano, J. M. (2018). Electrical circuits described by fractional conformable derivative. International Journal of Circuit Theory and Applications, 46(5), 1091-1100.
  • Mirza, I. A., Akram, M. S., Shah, N. A., Akhtar, S., & Muneer, M. (2021). Study of one‐dimensional contaminant transport in soils using fractional calculus. Mathematical Methods in the Applied Sciences, 44(8), 6839-6856.

Uzun Süreli Bir Kablo Su Emme Testi Sırasında XLPE'nin Kapasitans Değişimini Modellemek İçin Uyumlu Kesirli Türev Kullanımı

Yıl 2025, Cilt: 26 Sayı: 2, 61 - 75, 31.12.2025
https://doi.org/10.59314/tujes.1724085

Öz

Kablolardaki su difüzyonu çalışmaları, çeşitli mühendislik uygulamalarında kablo malzemelerinin güvenilirliği ve ömrü üzerindeki etkisi nedeniyle önemli ölçüde ilgi görmektedir. Bir kabloya nem girişi, mekanik ve elektriksel özelliklerde değişimlere neden olabilir; bu da altta yatan difüzyon mekanizmalarının anlaşılmasını hayati kılar. Geleneksel modeller bu süreci genellikle zaman ve uzayda homojenlik varsayarak basitleştirir ve dolayısıyla uygulamada gözlemlenen karmaşık davranışları hesaba katmakta yetersiz kalır. Bu çalışma, kablolarda su emme testi sırasında meydana gelen difüzyon davranışından kaynaklanan yalıtkan kapasitansını modellemek için Uyumlu kesirli türev yaklaşımını ele almaktadır. Su difüzyonuna bağlı olarak kablo yalıtkanının kapasitansı zamana bağlı bir süreç olarak değerlendirilmiştir. Eşdeğer kapasitans zamanın bir üs fonksiyonu olarak ifade edilmiştir. Uyumlu kesirli türevin modellemedeki doğruluğu, esnekliği ve avantajları vurgulanmaktadır. Modelin doğruluğu, deneysel verilerle test edilmiştir. Kesirli türev yaklaşımı, güç kablosu mühendisliği uygulamalarında su emme sürecinin yalıtkan kapasitansına etkisini daha iyi anlamak ve modellemek için yeni bir bakış açısı sunmaktadır.

Proje Numarası

UPN-2404

Teşekkür

.

Kaynakça

  • Abdeljawad, T. (2015). On conformable fractional calculus. Journal of computational and applied mathematics, 279, 57-66.
  • Al-Arainy, A., Qureshi, M., Malik, N., Saati, M., Al- Nather, O., & Anam, S. (2008). Diagnostic comparison of water tree growth in XLPE insulated power cables produced in GCC countries. Paper presented at the The International Conference on Electrical Engineering.
  • Atangana, A., & Bildik, N. (2013). The use of fractional order derivative to predict the groundwater flow. Using Conformable Fractional Derivative to Model the Capacitance 73 Variation of XLPE during a Prolonged Cable Water Absorption Test Mathematical Problems in Engineering, 2013(1), 543026.
  • Badmera, V., & Patel, R. (2017). Electrical characterization of XLPE cable using accelerated water absorption test on medium voltage power cable and partial discharge test on power cable with termination defects. Paper presented at the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT).
  • Baleanu, D., Agheli, B., & Al Qurashi, M. (2016). Fractional advection differential equation within Caputo and Caputo-Fabrizio derivatives, Advances Mech. Engin, 8, 12.
  • Bayrak, M. A., Demir, A., & Ozbilge, E. (2023). A novel approach for the solution of fractional diffusion problems with conformable derivative. Numerical Methods for Partial Differential Equations, 39(3), 1870-1887.
  • Beyer, G. (2021). The global cable industry: materials, markets, products: John Wiley & Sons. Bildik, N., & Deniz, S. (2019). A new fractional analysis on the polluted lakes system. Chaos, Solitons & Fractals, 122, 17-24.
  • Blazek, J. (2015). Computational fluid dynamics: principles and applications: Butterworth- Heinemann.
  • Bohaienko, V., & Bulavatsky, V. (2018). Mathematical modeling of solutes migration under the conditions of groundwater filtration by the model with the k- Caputo fractional derivative. Fractal and Fractional, 2(4), 28.
  • Elwakil, A. S. (2010). Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits and Systems Magazine, 10(4), 40-50.
  • Freeborn, T. J., Elwakil, A. S., & Allagui, A. (2018). Supercapacitor fractional-order model discharging from polynomial time-varying currents. Paper presented at the 2018 IEEE International Symposium on Circuits and Systems (ISCAS). Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2013). Measurement of supercapacitor fractional-order model parameters from voltage-excited step response. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 367-376.
  • Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015). Fractional-order models of supercapacitors, batteries and fuel cells: a survey. Materials for Renewable and Sustainable Energy, 4, 1-7.
  • Furuheim, K. M., Nilsson, S., Hvidsten, S., & Hellesø, S. M. (2013). Water Diffusion Barrier–A Novel Design for High Voltage Subsea Cables. Paper presented at the Proceedings of the Nordic Insulation Symposium.
  • Gao, C., & Zhou, C. (2019). Moisture absorption and cyclic absorption–desorption characters of fibrereinforced epoxy composites. Journal of materials science, 54(11), 8289-8301.
  • Gutierrez, R. E., Rosário, J. M., & Tenreiro Machado, J. (2010). Fractional order calculus: basic concepts and engineering applications. Mathematical Problems in Engineering, 2010(1), 375858.
  • Gülkaç, V. (2016). A Method of Finding Source Function for Inverse Diffusion Problem with Time‐ Fractional Derivative. Advances in Mathematical Physics, 2016(1), 6470949.
  • Helleso, S., Henoen, V., & Hvidsten, S. (2008). Simulation of water diffusion in polymeric cables using finite element methods. Paper presented at the Conference Record of the 2008 IEEE International Symposium on Electrical Insulation.
  • Hellesø, S., Hvidsten, S., Balog, G., & Furuheim, K. (2011). Calculation of water ingress in a HV subsea XLPE cable with a layered water barrier sheath system. Journal of Applied Polymer Science, 121(4), 2127-2133.
  • Hidalgo-Reyes, J., Gómez-Aguilar, J. F., Escobar- Jiménez, R. F., Alvarado-Martínez, V. M., & López-López, M. (2019). Classical and fractionalorder modeling of equivalent electrical circuits for supercapacitors and batteries, energy management strategies for hybrid systems and methods for the state of charge estimation: A state of the art review. Microelectronics Journal, 85, 109-128.
  • IEEE Recommended Practice for Marine Cable for Use on Shipboard and Fixed or Floating Facilities. (2021). In (pp. 1580-2021).
  • Karakulak, E., & Mutlu, R. (2023). Spice Model of a Capacitor Modelled Using Conformal Fractional Order Derivative and its Usage in Simulation of a Parallel RL-C_∝ Circuit. Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 24(2), 49-56.
  • Karhan, M., Cakir, M. F., & Ugur, M. (2020). Analysis of electric field and potential distribution of experimental setup for initiating and growing vented type water trees using finite element method. Journal of Science and Arts, 20(3), 755-766.
  • Karhan, M., Çakır, M. F., & Uğur, M. (2021). A new approach to the analysis of water treeing using feature extraction of vented type water tree images. Journal of Electrical Engineering & Technology, 16(3), 1241-1252.
  • Karhan, M., Uzunoğlu, C. P., ISSI, F., & UĞUR, M. (2017). Segmentation of Vented Water Trees in Microscopic Images Using Image Processing Techniques. Paper presented at the International Scientific Conference; ISCFEC: Gabrovo, Bulgaria.
  • Karhan, M., Yılmaz, A. E., & Uğur, M. (2017). Investigation the effect of solution conductivity on the growth rate and shape of water trees observed in distribution cables. IU-Journal of Electrical & Electronics Engineering, 17(2), 3445-3451.
  • Khalil, R., Al Horani, M., Yousef, A., & Sababheh, M. (2014). A new definition of fractional derivative. Journal of computational and applied mathematics, 264, 65-70.
  • Kim, M., Mert Coskun, O., Ordu, S., & Mutlu, R. (2024). Modeling Pollutant Diffusion in the Ground Using Conformable Fractional Derivative in Spherical Coordinates with Complete Symmetry. Symmetry, 16(10), 1358.
  • Kopka, R. (2017). Estimation of supercapacitor energy storage based on fractional differential equations. Nanoscale research letters, 12(1), 636. Kothari, K., Mehta, U. V., & Prasad, R. (2019). Fractional-order system modeling and its applications. Journal of Engineering Science and Technology Review, 12(6), 1-10.
  • Lewandowski, M., & Orzyłowski, M. (2017). Fractional-order models: The case study of the supercapacitor capacitance measurement. Bulletin of the Polish Academy of Sciences Technical Sciences, 449-457-449-457.
  • Martínez, L., Rosales, J., Carreño, C., & Lozano, J. M. (2018). Electrical circuits described by fractional conformable derivative. International Journal of Circuit Theory and Applications, 46(5), 1091-1100.
  • Mirza, I. A., Akram, M. S., Shah, N. A., Akhtar, S., & Muneer, M. (2021). Study of one‐dimensional contaminant transport in soils using fractional calculus. Mathematical Methods in the Applied Sciences, 44(8), 6839-6856.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Tasarım ve Davranışları
Bölüm Araştırma Makalesi
Yazarlar

Lütfi Ulusoy 0000-0002-8180-6270

Reşat Mutlu 0000-0003-0030-7136

Avşin Öztaş 0009-0002-4237-9031

Sinem Şahin 0009-0007-6488-6065

Fatih Yerişenoğlu 0009-0001-7560-0145

Proje Numarası UPN-2404
Gönderilme Tarihi 23 Haziran 2025
Kabul Tarihi 3 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 2

Kaynak Göster

IEEE L. Ulusoy, R. Mutlu, A. Öztaş, S. Şahin, ve F. Yerişenoğlu, “Using the Conformable Fractional Derivative to Model the Capacitance Variation of XLPE During a Prolonged Cable Water Absorption Test”, TUJES, c. 26, sy. 2, ss. 61–75, 2025, doi: 10.59314/tujes.1724085.