Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental Investigation of Energy and Exergy Analysis of Polycrystalline Silicon Photovoltaic Panels

Yıl 2025, Cilt: 26 Sayı: 2, 111 - 126, 31.12.2025
https://doi.org/10.59314/tujes.1842339

Öz

Today, the increase in energy conversion costs and energy demand, coupled with the inadequacy of existing resources, necessitates the production of energy with high efficiency and minimal loss. At this stage, efficiency-enhancing applications in energy conversion systems are becoming increasingly important. In this study, photovoltaic systems were operated at inclination angles of 20°, 30°, and 40° under real field conditions, and experimental studies were conducted to determine the inclination angle at which the system operated with higher efficiency in Edirne's climate conditions for August 2025. In the experimental studies, meteorological data, panel temperature, current, and voltage were measured and recorded. The energy and exergy analysis of the system was performed using the experimental data. According to the analysis results, the energy and exergy efficiency of the photovoltaic panel is high at a 30° tilt angle in August. No experimental study has been conducted in the literature examining the energy exergy analysis of photovoltaic panels at different tilt angles for Edirne's climatic conditions. In this respect, the study serves as a model example for Edirne and locations with similar climatic conditions.

Etik Beyan

This study was funded by the Scientific Research Projects Unit of Trakya University (TÜBAP) with support for Master's Degree Thesis Projects (Project No: TÜBAP-2025/123).

Destekleyen Kurum

Scientific Research Projects Unit of Trakya University

Proje Numarası

TÜBAP-2025/123

Teşekkür

We would like to express our gratitude to the Rectorate of Trakya University.

Kaynakça

  • Arslan, E., Küçük, F. A., Biçer, Ç., Ozsoy, Ö. (2024). Determining energy, exergy and enviroeconomic analysis of stand-alone photovoltaic panel under harsh environment condition: Antarctica Horseshoe-Island cases. Renewable Energy, 226, 120440.
  • Deng, R., Chang, N. L., Ouyang, Z., Chong, C. M. (2019). A techno-economic review of silicon photovoltaic module recycling panel. Renewable and Sustainable Energy Reviews, 109, 532–550.
  • Elhadj Sidi, C. E. B., Ndiaye, M. L., Ndiaye, A., & Ndiaye, P. A. (2015). Outdoor performance analysis of a mono-crystalline photovoltaic module: Irradiance and temperature effect on exergetic efficiency. International Journal of Physical Sciences, 10(11), 351–358. https://doi.org/10.5897/IJPS2015.4356
  • Kramarz, J., & Wyczesany, A. (1991). Exergetic evaluation of coal processing processes towards liquid fuels. Cracow University of Technology Publishing House.
  • Kuczynski, W., & Chliszcz, K. (2023). Energy and exergy analysis of photovoltaic panels in northern Poland. Renewable and Sustainable Energy Reviews, 174, 113138.
  • Kumar, P., Gupta, V., Sudhakar, K., & Kumar Singh, A. (2016). Experimental analysis of comparative temperature and exergy of crystalline (c-Si) and amorphous (a-Si) solar PV module using water cooling method. IOSR Journal of Mechanical and Civil Engineering, 13(5), 21–26. https://doi.org/10.9790/1684-1305032126
  • Özel, S., & Çamdalı, Ü. (2024). Bir fotovoltaik güneş enerjisi santralinin enerji ve ekserji analizi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 26(78), 498–504.
  • Petela, R. (2003). Exergy of undiluted thermal radiation. Solar Energy, 74, 469–488. https://doi.org/10.1016/S0038-092X(03)00226-3
  • Petela, R. (2008). An approach to the exergy analysis of photosynthesis. Solar Energy, 82(3), 11–328. https://doi.org/10.1016/j.solener.2007.09.002
  • Ravat, P. (2017). Exergy performance analysis of 300 W solar photovoltaic module. International Journal of Engineering Sciences and Research Technology, 3, 317–390. https://doi.org/10.5281/zenodo.438094
  • Sarhaddi, F., Farahat, S., Ajam, H., & Behzadmehr, A. (2010). Exergetic performance evaluation of a solar photovoltaic (PV) array. Australian Journal of Basic and Applied Sciences, 4(3), 502–519.
  • Shukla, A., Khare, M., & Shukla, K. N. (2015). Experimental exergetic performance evaluation of solar PV module. International Journal of Scientific and Research Publications, 5(1), 1–9.
  • Sica, D., Malandrino, O., Supino, S., Testa, M., & Lucchetti, M. C. (2018). Management of end-of-life photovoltaic panels as a step towards a circular economy. Renewable and Sustainable Energy Reviews, 82, 2934–2945. https://doi.org/10.1016/j.rser.2017.10.039
  • Sudhakar, K., & Srivastava, T. (2013). Energy and exergy analysis of 36 W solar photovoltaic module. International Journal of Ambient Energy, 35(1), 51–57.
  • Szargut, J. (1996). Exergetic analysis of thermal processes. Institute of Thermal Technology of the Silesian University of Technology.
  • Tsatsaronis, G. (2007). Definitions and nomenclature in exergy analysis and exergoeconomics. Energy, 32(4), 249–253.
  • Wong, K. F. V. (2000). Thermodynamics for Engineers (2nd ed.). CRC Press, Taylor & Francis Group, pp. 4.1–4.2.
  • International Energy Agency. (2018). World Energy Outlook 2018. https://www.iea.org/reports/world-energy-outlook-2018
  • Edirne Belediyesi. https://www.edirne.bel.tr
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı. https://www.enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklari-gunes (12.11.2025)

Polikristal Silikon Fotovoltaik Panelin Enerji ve Ekserji Analizinin Deneysel İncelemesi

Yıl 2025, Cilt: 26 Sayı: 2, 111 - 126, 31.12.2025
https://doi.org/10.59314/tujes.1842339

Öz

Günümüzde enerji dönüşüm maliyetlerinin ve enerji talebinin artması, mevcut kaynakların yetersizliği, enerjinin minimum kayıpla yüksek verimle üretilmesini gerekli kılmaktadır. Bu aşamada enerji dönüşüm sistemindeki verimlilik artırıcı uygulamalar gün geçtikçe önem kazanmaktadır. Bu çalışmada, gerçek saha koşullarında fotovoltaik sistem 20⁰, 30⁰ ve 40⁰ eğim açılarında çalıştırılarak, Edirne iklim koşullarında 2025 yılı ağustos ayı için hangi eğim açısında sistemin daha yüksek verimle çalıştığı deneysel çalışmalarla tespit edilmiştir. Deneysel çalışmalarda meteorolojik veriler, panel sıcaklığı, akımı ve gerilimi ölçüp kaydedilmiştir. Deneysel veriler kullanılarak sistemin enerji ve ekserji analizi yapılmıştır. Analiz sonuçlarına göre ağustos ayında 30⁰ eğim açısında fotovoltaik panelin enerji eve ekserji verimliliği yüksektir. Literatürde, Edirne iklim koşulları için fotovoltaik panelin farklı eğim açıları için enerji ekserji analizini inceleyen deneysel bir çalışma yapılmamıştır. Bu açıdan çalışma Edirne ve benzer iklim kuşağına sahip lokasyonlar için örnek model niteliği taşımaktadır.

Etik Beyan

Bu çalışma, Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP) tarafından Lisansüstü Tez Projeleri desteği ile finanse edilmiştir (Proje No: TÜBAP-2025/123).

Destekleyen Kurum

Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP)

Proje Numarası

TÜBAP-2025/123

Teşekkür

Trakya Üniversitesi Rektörlüğüne teşekkürlerimizi sunarız.

Kaynakça

  • Arslan, E., Küçük, F. A., Biçer, Ç., Ozsoy, Ö. (2024). Determining energy, exergy and enviroeconomic analysis of stand-alone photovoltaic panel under harsh environment condition: Antarctica Horseshoe-Island cases. Renewable Energy, 226, 120440.
  • Deng, R., Chang, N. L., Ouyang, Z., Chong, C. M. (2019). A techno-economic review of silicon photovoltaic module recycling panel. Renewable and Sustainable Energy Reviews, 109, 532–550.
  • Elhadj Sidi, C. E. B., Ndiaye, M. L., Ndiaye, A., & Ndiaye, P. A. (2015). Outdoor performance analysis of a mono-crystalline photovoltaic module: Irradiance and temperature effect on exergetic efficiency. International Journal of Physical Sciences, 10(11), 351–358. https://doi.org/10.5897/IJPS2015.4356
  • Kramarz, J., & Wyczesany, A. (1991). Exergetic evaluation of coal processing processes towards liquid fuels. Cracow University of Technology Publishing House.
  • Kuczynski, W., & Chliszcz, K. (2023). Energy and exergy analysis of photovoltaic panels in northern Poland. Renewable and Sustainable Energy Reviews, 174, 113138.
  • Kumar, P., Gupta, V., Sudhakar, K., & Kumar Singh, A. (2016). Experimental analysis of comparative temperature and exergy of crystalline (c-Si) and amorphous (a-Si) solar PV module using water cooling method. IOSR Journal of Mechanical and Civil Engineering, 13(5), 21–26. https://doi.org/10.9790/1684-1305032126
  • Özel, S., & Çamdalı, Ü. (2024). Bir fotovoltaik güneş enerjisi santralinin enerji ve ekserji analizi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 26(78), 498–504.
  • Petela, R. (2003). Exergy of undiluted thermal radiation. Solar Energy, 74, 469–488. https://doi.org/10.1016/S0038-092X(03)00226-3
  • Petela, R. (2008). An approach to the exergy analysis of photosynthesis. Solar Energy, 82(3), 11–328. https://doi.org/10.1016/j.solener.2007.09.002
  • Ravat, P. (2017). Exergy performance analysis of 300 W solar photovoltaic module. International Journal of Engineering Sciences and Research Technology, 3, 317–390. https://doi.org/10.5281/zenodo.438094
  • Sarhaddi, F., Farahat, S., Ajam, H., & Behzadmehr, A. (2010). Exergetic performance evaluation of a solar photovoltaic (PV) array. Australian Journal of Basic and Applied Sciences, 4(3), 502–519.
  • Shukla, A., Khare, M., & Shukla, K. N. (2015). Experimental exergetic performance evaluation of solar PV module. International Journal of Scientific and Research Publications, 5(1), 1–9.
  • Sica, D., Malandrino, O., Supino, S., Testa, M., & Lucchetti, M. C. (2018). Management of end-of-life photovoltaic panels as a step towards a circular economy. Renewable and Sustainable Energy Reviews, 82, 2934–2945. https://doi.org/10.1016/j.rser.2017.10.039
  • Sudhakar, K., & Srivastava, T. (2013). Energy and exergy analysis of 36 W solar photovoltaic module. International Journal of Ambient Energy, 35(1), 51–57.
  • Szargut, J. (1996). Exergetic analysis of thermal processes. Institute of Thermal Technology of the Silesian University of Technology.
  • Tsatsaronis, G. (2007). Definitions and nomenclature in exergy analysis and exergoeconomics. Energy, 32(4), 249–253.
  • Wong, K. F. V. (2000). Thermodynamics for Engineers (2nd ed.). CRC Press, Taylor & Francis Group, pp. 4.1–4.2.
  • International Energy Agency. (2018). World Energy Outlook 2018. https://www.iea.org/reports/world-energy-outlook-2018
  • Edirne Belediyesi. https://www.edirne.bel.tr
  • T.C. Enerji ve Tabii Kaynaklar Bakanlığı. https://www.enerji.gov.tr/eigm-yenilenebilir-enerji-kaynaklari-gunes (12.11.2025)
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç)
Bölüm Araştırma Makalesi
Yazarlar

Hacer Akhan 0000-0002-7896-6441

Mert Bora Hazar 0009-0003-5081-7860

Proje Numarası TÜBAP-2025/123
Gönderilme Tarihi 15 Aralık 2025
Kabul Tarihi 30 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 26 Sayı: 2

Kaynak Göster

IEEE H. Akhan ve M. B. Hazar, “Polikristal Silikon Fotovoltaik Panelin Enerji ve Ekserji Analizinin Deneysel İncelemesi”, TUJES, c. 26, sy. 2, ss. 111–126, 2025, doi: 10.59314/tujes.1842339.