A Microcontroller-Based Signal Generator With High Output Current
Yıl 2024,
Cilt: 25 Sayı: 1, 1 - 9
Ersoy Mevsim
,
Reşat Mutlu
Öz
Signal generators play a very important role in designing and testing circuits. They can supply various commonly used waveforms and can be designed using analog, digital, and Direct Digital Synthesis methods. Some signal generators have very low current output. In this paper, it is shown that a signal generator can be made using a cheap microcontroller board such as the Arduino Nano Klon V3.0 microcontroller. A power opamp TDA2030 is used to increase its output current. The signal generator can be operated up to 500 Hz Also, the signal generator can give an output current of up to 3 Amperes. The signal generator can be programmed to supply various common waveforms as well as any desired waveform considering its frequency limit.
Kaynakça
- Arik, S., & Kilic, R. (2014). Reconfigurable hardware
platform for experimental testing and verifying of
memristor-based chaotic systems. Journal of
Circuits, Systems, and Computers, 23(10),
1450145.
- AL-Helali, R. A., Mohammed, I. A., & Abdullah, A. I.
(2008). Microcontroller-based function generator.
Al-Khwarizmi Engineering Journal, 4(1), 48-57.
- Bilgin, S., Üser, Y., & Oktay, M. (2016). Low cost
laboratory type signal generator using DDS
method. International Journal of Engineering and
Applied Sciences, 8(4), 59-65.
- Boylestad, R. L., & Nashelsky, L. (2018). Electronic
Devices and Circuit Theory 11th ed.
- Castro, J. A., Olmo, A., Pérez, P., & Yúfera, A. (2016).
Microcontroller-based sinusoidal voltage
generation for electrical bio-impedance
spectroscopy applications.
- Çınar, S. M., & Arseven, B. (2021). Kısmi Gölgelenme
Etkilerini Modelleyebilen Bir PV Emülatör
Tasarımı. Journal of the Institute of Science and
Technology, 11(2), 982-997.
- Ding, Shoucheng, An, Aimin and Gou Xinke (2012).
“Digital Waveform Generator Based on FPGA”,Research Journal of Applied Sciences,
Engineering and Technology.
- Dursun, M., Kaşifoğlu, E. (2018). “Design and
implementation of the FPGA-based chaotic van
der pol oscillator”, International Advanced
Researches and Engineering Journal, 2(3), 309-
314.
- Electronic Signal Generators, A Compilation,
https://ntrs.nasa.gov/api/citations/19720004434/d
ownloads/19720004434.pdf. (Access date:
01/12/2023).
- Gontean, A., Lucaciu, L., & Dan, B. (2003).
Microcontroller Based Programmable Signal
Generator. IFAC Proceedings Volumes, 36(1),
105-108.
- Hu, H. (2014). Design of a Functional Signal Generator
based on MAX038 and Microcontroller. In
Advanced Materials Research (Vol. 915, pp.
1167-1170). Trans Tech Publications Ltd.
- Karakulak, E., Tan, R. K., & Mutlu, R. (2021).
STM32F429 Discovery Board-Based Emulator
for Lotka-Volterra Equations. Journal of the
Institute of Science and Technology, 11(3), 1887-
1895.
- Karakulak, E (2022). ARM MCU-Based Experimental
EEG Signal Generator Using Internal DAC and
PWM Outputs. Gazi University Journal of
Science, 1-1.
- Karakulak, E., & Mutlu, R. (2020). The memristive
system behavior of a diac. Journal of
Computational Electronics, 19(3), 1344-1355.
- Karthikeyan, R., Çiçek, S., Pham, V. T., Akgul, A., &
Duraisamy, P. (2020). A class of unexcited
hyperjerk systems with megastability and its
analog and microcontroller-based embedded
system design. Physica Scripta, 95(5), 055214.
- Mandaliya, H., Mankodi, P., & Makwana, B. (2013).
Microcontroller based DDS function generator.
International Journal of Engineering Science and
Innovative Technology (IJESIT), 2(1), 483-486.
- Mohan, N., Undeland, T. M., & Robbins, W. P. (2003).
Power electronics: converters, applications, and
design. John wiley & sons.
- Rahma, Fadhil (2014). "Analog Programmable
Electronic Circuit-based Chaotic Lorentz
System." Basrah Journal for Engineering
Science14.1: 39-47.
- Schubert Jr, T. F., & Kim, E. M. (2016). Fundamentals
of electronics: Book 4 oscillators and advanced
electronics topics. Synthesis Lectures on Digital
Circuits and Systems, 11(2), 1-266.
- Usta, B. N., Tepeyurt, B., & Karakulak, E. (2021).
Simple Synthetic ECG Generation via PWM
Output of Microcontroller. In 2021 5th
International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT)
(pp. 27-30). IEEE.
- Yener, S. C., Barbaros, C., Mutlu, R., & Karakulak, E.
(2017). Implementation of Microcontroller-Based
Memristive Chaotic Circuit. Acta Physica
Polonica A, 132(3), 1058-1061.
- Yener, Ş.Ç., and Mutlu, Reşat (2018). "A
microcontroller-based ECG signal generator
design utilizing microcontroller PWM output and
experimental ECG data." 2018 Electric
Electronics, Computer Science, Biomedical
Engineerings' Meeting (EBBT). IEEE.
- Yener, Ş. Ç., & Mutlu, R. (2019). A Microcontroller
Implementation Of Hindmarsh-Rose Neuron
Model-Based Biological Central Pattern
Generator. In 2019 1st International Informatics and Software Engineering Conference (UBMYK)
(pp. 1-4). IEEE.
- Yener, Ş. Ç., Mutlu. R., & Karakulak. E. (2020).
Implementation of a Microcontroller-Based
Chaotic Circuit of Lorenz Equations. Balkan
Journal of Electrical and Computer Engineering,
8(4), 355-360.
- Oppenheim, A. V., & Verghese, G. C. (2017). Signals,
systems & inference. London: Pearson
YÜKSEK ÇIKIŞ AKIMINA SAHİP MİKRODENETLEYİCİ TABANLI SİNYAL JENERATÖRÜ
Yıl 2024,
Cilt: 25 Sayı: 1, 1 - 9
Ersoy Mevsim
,
Reşat Mutlu
Öz
Sinyal üreteçleri devrelerin tasarımında ve test edilmesinde çok önemli bir rol oynamaktadır. Onlar yaygın olarak kullanılan çeşitli dalga formlarını sağlayabilirler ve analog, sayısal ve doğrudan sayısal sentezleme yöntemleri ile tasarlanabilirler. Bazı sinyal üreteçleri çok düşük akım çıkışına sahiptir. Bu makalede, Arduino Nano Klon V3.0 mikrodenetleyici gibi ucuz bir mikrodenetleyici kartı kullanılarak bir sinyal üretecinin yapılabileceği gösterilmiştir. Çıkış akımını artırmak için bir güç opampı olan TDA2030 kullanılmıştır.. Sinyal üreteci 500 Hz’e kadar çalıştırılabilmektedir. Ayrıca, sinyal üreteci 3 Ampere kadar çıkış akımı verebilmektedir. Sinyal üreteci, frekans limiti göz önünde bulundurularak çeşitli yaygın dalga biçimlerinin yanı sıra istenen herhangi bir dalga şeklini sağlamak üzere programlanabilir.
Kaynakça
- Arik, S., & Kilic, R. (2014). Reconfigurable hardware
platform for experimental testing and verifying of
memristor-based chaotic systems. Journal of
Circuits, Systems, and Computers, 23(10),
1450145.
- AL-Helali, R. A., Mohammed, I. A., & Abdullah, A. I.
(2008). Microcontroller-based function generator.
Al-Khwarizmi Engineering Journal, 4(1), 48-57.
- Bilgin, S., Üser, Y., & Oktay, M. (2016). Low cost
laboratory type signal generator using DDS
method. International Journal of Engineering and
Applied Sciences, 8(4), 59-65.
- Boylestad, R. L., & Nashelsky, L. (2018). Electronic
Devices and Circuit Theory 11th ed.
- Castro, J. A., Olmo, A., Pérez, P., & Yúfera, A. (2016).
Microcontroller-based sinusoidal voltage
generation for electrical bio-impedance
spectroscopy applications.
- Çınar, S. M., & Arseven, B. (2021). Kısmi Gölgelenme
Etkilerini Modelleyebilen Bir PV Emülatör
Tasarımı. Journal of the Institute of Science and
Technology, 11(2), 982-997.
- Ding, Shoucheng, An, Aimin and Gou Xinke (2012).
“Digital Waveform Generator Based on FPGA”,Research Journal of Applied Sciences,
Engineering and Technology.
- Dursun, M., Kaşifoğlu, E. (2018). “Design and
implementation of the FPGA-based chaotic van
der pol oscillator”, International Advanced
Researches and Engineering Journal, 2(3), 309-
314.
- Electronic Signal Generators, A Compilation,
https://ntrs.nasa.gov/api/citations/19720004434/d
ownloads/19720004434.pdf. (Access date:
01/12/2023).
- Gontean, A., Lucaciu, L., & Dan, B. (2003).
Microcontroller Based Programmable Signal
Generator. IFAC Proceedings Volumes, 36(1),
105-108.
- Hu, H. (2014). Design of a Functional Signal Generator
based on MAX038 and Microcontroller. In
Advanced Materials Research (Vol. 915, pp.
1167-1170). Trans Tech Publications Ltd.
- Karakulak, E., Tan, R. K., & Mutlu, R. (2021).
STM32F429 Discovery Board-Based Emulator
for Lotka-Volterra Equations. Journal of the
Institute of Science and Technology, 11(3), 1887-
1895.
- Karakulak, E (2022). ARM MCU-Based Experimental
EEG Signal Generator Using Internal DAC and
PWM Outputs. Gazi University Journal of
Science, 1-1.
- Karakulak, E., & Mutlu, R. (2020). The memristive
system behavior of a diac. Journal of
Computational Electronics, 19(3), 1344-1355.
- Karthikeyan, R., Çiçek, S., Pham, V. T., Akgul, A., &
Duraisamy, P. (2020). A class of unexcited
hyperjerk systems with megastability and its
analog and microcontroller-based embedded
system design. Physica Scripta, 95(5), 055214.
- Mandaliya, H., Mankodi, P., & Makwana, B. (2013).
Microcontroller based DDS function generator.
International Journal of Engineering Science and
Innovative Technology (IJESIT), 2(1), 483-486.
- Mohan, N., Undeland, T. M., & Robbins, W. P. (2003).
Power electronics: converters, applications, and
design. John wiley & sons.
- Rahma, Fadhil (2014). "Analog Programmable
Electronic Circuit-based Chaotic Lorentz
System." Basrah Journal for Engineering
Science14.1: 39-47.
- Schubert Jr, T. F., & Kim, E. M. (2016). Fundamentals
of electronics: Book 4 oscillators and advanced
electronics topics. Synthesis Lectures on Digital
Circuits and Systems, 11(2), 1-266.
- Usta, B. N., Tepeyurt, B., & Karakulak, E. (2021).
Simple Synthetic ECG Generation via PWM
Output of Microcontroller. In 2021 5th
International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT)
(pp. 27-30). IEEE.
- Yener, S. C., Barbaros, C., Mutlu, R., & Karakulak, E.
(2017). Implementation of Microcontroller-Based
Memristive Chaotic Circuit. Acta Physica
Polonica A, 132(3), 1058-1061.
- Yener, Ş.Ç., and Mutlu, Reşat (2018). "A
microcontroller-based ECG signal generator
design utilizing microcontroller PWM output and
experimental ECG data." 2018 Electric
Electronics, Computer Science, Biomedical
Engineerings' Meeting (EBBT). IEEE.
- Yener, Ş. Ç., & Mutlu, R. (2019). A Microcontroller
Implementation Of Hindmarsh-Rose Neuron
Model-Based Biological Central Pattern
Generator. In 2019 1st International Informatics and Software Engineering Conference (UBMYK)
(pp. 1-4). IEEE.
- Yener, Ş. Ç., Mutlu. R., & Karakulak. E. (2020).
Implementation of a Microcontroller-Based
Chaotic Circuit of Lorenz Equations. Balkan
Journal of Electrical and Computer Engineering,
8(4), 355-360.
- Oppenheim, A. V., & Verghese, G. C. (2017). Signals,
systems & inference. London: Pearson