Araştırma Makalesi
BibTex RIS Kaynak Göster

A Microcontroller-Based Signal Generator With High Output Current

Yıl 2024, Cilt: 25 Sayı: 1, 1 - 9, 30.06.2024
https://doi.org/10.59314/tujes.1404236

Öz

Signal generators play a very important role in designing and testing circuits. They can supply various commonly used waveforms and can be designed using analog, digital, and Direct Digital Synthesis methods. Some signal generators have very low current output. In this paper, it is shown that a signal generator can be made using a cheap microcontroller board such as the Arduino Nano Klon V3.0 microcontroller. A power opamp TDA2030 is used to increase its output current. The signal generator can be operated up to 500 Hz Also, the signal generator can give an output current of up to 3 Amperes. The signal generator can be programmed to supply various common waveforms as well as any desired waveform considering its frequency limit.

Kaynakça

  • Arik, S., & Kilic, R. (2014). Reconfigurable hardware platform for experimental testing and verifying of memristor-based chaotic systems. Journal of Circuits, Systems, and Computers, 23(10), 1450145.
  • AL-Helali, R. A., Mohammed, I. A., & Abdullah, A. I. (2008). Microcontroller-based function generator. Al-Khwarizmi Engineering Journal, 4(1), 48-57.
  • Bilgin, S., Üser, Y., & Oktay, M. (2016). Low cost laboratory type signal generator using DDS method. International Journal of Engineering and Applied Sciences, 8(4), 59-65.
  • Boylestad, R. L., & Nashelsky, L. (2018). Electronic Devices and Circuit Theory 11th ed.
  • Castro, J. A., Olmo, A., Pérez, P., & Yúfera, A. (2016). Microcontroller-based sinusoidal voltage generation for electrical bio-impedance spectroscopy applications.
  • Çınar, S. M., & Arseven, B. (2021). Kısmi Gölgelenme Etkilerini Modelleyebilen Bir PV Emülatör Tasarımı. Journal of the Institute of Science and Technology, 11(2), 982-997.
  • Ding, Shoucheng, An, Aimin and Gou Xinke (2012). “Digital Waveform Generator Based on FPGA”,Research Journal of Applied Sciences, Engineering and Technology.
  • Dursun, M., Kaşifoğlu, E. (2018). “Design and implementation of the FPGA-based chaotic van der pol oscillator”, International Advanced Researches and Engineering Journal, 2(3), 309- 314.
  • Electronic Signal Generators, A Compilation, https://ntrs.nasa.gov/api/citations/19720004434/d ownloads/19720004434.pdf. (Access date: 01/12/2023).
  • Gontean, A., Lucaciu, L., & Dan, B. (2003). Microcontroller Based Programmable Signal Generator. IFAC Proceedings Volumes, 36(1), 105-108.
  • Hu, H. (2014). Design of a Functional Signal Generator based on MAX038 and Microcontroller. In Advanced Materials Research (Vol. 915, pp. 1167-1170). Trans Tech Publications Ltd.
  • Karakulak, E., Tan, R. K., & Mutlu, R. (2021). STM32F429 Discovery Board-Based Emulator for Lotka-Volterra Equations. Journal of the Institute of Science and Technology, 11(3), 1887- 1895.
  • Karakulak, E (2022). ARM MCU-Based Experimental EEG Signal Generator Using Internal DAC and PWM Outputs. Gazi University Journal of Science, 1-1.
  • Karakulak, E., & Mutlu, R. (2020). The memristive system behavior of a diac. Journal of Computational Electronics, 19(3), 1344-1355.
  • Karthikeyan, R., Çiçek, S., Pham, V. T., Akgul, A., & Duraisamy, P. (2020). A class of unexcited hyperjerk systems with megastability and its analog and microcontroller-based embedded system design. Physica Scripta, 95(5), 055214.
  • Mandaliya, H., Mankodi, P., & Makwana, B. (2013). Microcontroller based DDS function generator. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(1), 483-486.
  • Mohan, N., Undeland, T. M., & Robbins, W. P. (2003). Power electronics: converters, applications, and design. John wiley & sons.
  • Rahma, Fadhil (2014). "Analog Programmable Electronic Circuit-based Chaotic Lorentz System." Basrah Journal for Engineering Science14.1: 39-47.
  • Schubert Jr, T. F., & Kim, E. M. (2016). Fundamentals of electronics: Book 4 oscillators and advanced electronics topics. Synthesis Lectures on Digital Circuits and Systems, 11(2), 1-266.
  • Usta, B. N., Tepeyurt, B., & Karakulak, E. (2021). Simple Synthetic ECG Generation via PWM Output of Microcontroller. In 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 27-30). IEEE.
  • Yener, S. C., Barbaros, C., Mutlu, R., & Karakulak, E. (2017). Implementation of Microcontroller-Based Memristive Chaotic Circuit. Acta Physica Polonica A, 132(3), 1058-1061.
  • Yener, Ş.Ç., and Mutlu, Reşat (2018). "A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data." 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT). IEEE.
  • Yener, Ş. Ç., & Mutlu, R. (2019). A Microcontroller Implementation Of Hindmarsh-Rose Neuron Model-Based Biological Central Pattern Generator. In 2019 1st International Informatics and Software Engineering Conference (UBMYK) (pp. 1-4). IEEE.
  • Yener, Ş. Ç., Mutlu. R., & Karakulak. E. (2020). Implementation of a Microcontroller-Based Chaotic Circuit of Lorenz Equations. Balkan Journal of Electrical and Computer Engineering, 8(4), 355-360.
  • Oppenheim, A. V., & Verghese, G. C. (2017). Signals, systems & inference. London: Pearson

YÜKSEK ÇIKIŞ AKIMINA SAHİP MİKRODENETLEYİCİ TABANLI SİNYAL JENERATÖRÜ

Yıl 2024, Cilt: 25 Sayı: 1, 1 - 9, 30.06.2024
https://doi.org/10.59314/tujes.1404236

Öz

Sinyal üreteçleri devrelerin tasarımında ve test edilmesinde çok önemli bir rol oynamaktadır. Onlar yaygın olarak kullanılan çeşitli dalga formlarını sağlayabilirler ve analog, sayısal ve doğrudan sayısal sentezleme yöntemleri ile tasarlanabilirler. Bazı sinyal üreteçleri çok düşük akım çıkışına sahiptir. Bu makalede, Arduino Nano Klon V3.0 mikrodenetleyici gibi ucuz bir mikrodenetleyici kartı kullanılarak bir sinyal üretecinin yapılabileceği gösterilmiştir. Çıkış akımını artırmak için bir güç opampı olan TDA2030 kullanılmıştır.. Sinyal üreteci 500 Hz’e kadar çalıştırılabilmektedir. Ayrıca, sinyal üreteci 3 Ampere kadar çıkış akımı verebilmektedir. Sinyal üreteci, frekans limiti göz önünde bulundurularak çeşitli yaygın dalga biçimlerinin yanı sıra istenen herhangi bir dalga şeklini sağlamak üzere programlanabilir.

Kaynakça

  • Arik, S., & Kilic, R. (2014). Reconfigurable hardware platform for experimental testing and verifying of memristor-based chaotic systems. Journal of Circuits, Systems, and Computers, 23(10), 1450145.
  • AL-Helali, R. A., Mohammed, I. A., & Abdullah, A. I. (2008). Microcontroller-based function generator. Al-Khwarizmi Engineering Journal, 4(1), 48-57.
  • Bilgin, S., Üser, Y., & Oktay, M. (2016). Low cost laboratory type signal generator using DDS method. International Journal of Engineering and Applied Sciences, 8(4), 59-65.
  • Boylestad, R. L., & Nashelsky, L. (2018). Electronic Devices and Circuit Theory 11th ed.
  • Castro, J. A., Olmo, A., Pérez, P., & Yúfera, A. (2016). Microcontroller-based sinusoidal voltage generation for electrical bio-impedance spectroscopy applications.
  • Çınar, S. M., & Arseven, B. (2021). Kısmi Gölgelenme Etkilerini Modelleyebilen Bir PV Emülatör Tasarımı. Journal of the Institute of Science and Technology, 11(2), 982-997.
  • Ding, Shoucheng, An, Aimin and Gou Xinke (2012). “Digital Waveform Generator Based on FPGA”,Research Journal of Applied Sciences, Engineering and Technology.
  • Dursun, M., Kaşifoğlu, E. (2018). “Design and implementation of the FPGA-based chaotic van der pol oscillator”, International Advanced Researches and Engineering Journal, 2(3), 309- 314.
  • Electronic Signal Generators, A Compilation, https://ntrs.nasa.gov/api/citations/19720004434/d ownloads/19720004434.pdf. (Access date: 01/12/2023).
  • Gontean, A., Lucaciu, L., & Dan, B. (2003). Microcontroller Based Programmable Signal Generator. IFAC Proceedings Volumes, 36(1), 105-108.
  • Hu, H. (2014). Design of a Functional Signal Generator based on MAX038 and Microcontroller. In Advanced Materials Research (Vol. 915, pp. 1167-1170). Trans Tech Publications Ltd.
  • Karakulak, E., Tan, R. K., & Mutlu, R. (2021). STM32F429 Discovery Board-Based Emulator for Lotka-Volterra Equations. Journal of the Institute of Science and Technology, 11(3), 1887- 1895.
  • Karakulak, E (2022). ARM MCU-Based Experimental EEG Signal Generator Using Internal DAC and PWM Outputs. Gazi University Journal of Science, 1-1.
  • Karakulak, E., & Mutlu, R. (2020). The memristive system behavior of a diac. Journal of Computational Electronics, 19(3), 1344-1355.
  • Karthikeyan, R., Çiçek, S., Pham, V. T., Akgul, A., & Duraisamy, P. (2020). A class of unexcited hyperjerk systems with megastability and its analog and microcontroller-based embedded system design. Physica Scripta, 95(5), 055214.
  • Mandaliya, H., Mankodi, P., & Makwana, B. (2013). Microcontroller based DDS function generator. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(1), 483-486.
  • Mohan, N., Undeland, T. M., & Robbins, W. P. (2003). Power electronics: converters, applications, and design. John wiley & sons.
  • Rahma, Fadhil (2014). "Analog Programmable Electronic Circuit-based Chaotic Lorentz System." Basrah Journal for Engineering Science14.1: 39-47.
  • Schubert Jr, T. F., & Kim, E. M. (2016). Fundamentals of electronics: Book 4 oscillators and advanced electronics topics. Synthesis Lectures on Digital Circuits and Systems, 11(2), 1-266.
  • Usta, B. N., Tepeyurt, B., & Karakulak, E. (2021). Simple Synthetic ECG Generation via PWM Output of Microcontroller. In 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 27-30). IEEE.
  • Yener, S. C., Barbaros, C., Mutlu, R., & Karakulak, E. (2017). Implementation of Microcontroller-Based Memristive Chaotic Circuit. Acta Physica Polonica A, 132(3), 1058-1061.
  • Yener, Ş.Ç., and Mutlu, Reşat (2018). "A microcontroller-based ECG signal generator design utilizing microcontroller PWM output and experimental ECG data." 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT). IEEE.
  • Yener, Ş. Ç., & Mutlu, R. (2019). A Microcontroller Implementation Of Hindmarsh-Rose Neuron Model-Based Biological Central Pattern Generator. In 2019 1st International Informatics and Software Engineering Conference (UBMYK) (pp. 1-4). IEEE.
  • Yener, Ş. Ç., Mutlu. R., & Karakulak. E. (2020). Implementation of a Microcontroller-Based Chaotic Circuit of Lorenz Equations. Balkan Journal of Electrical and Computer Engineering, 8(4), 355-360.
  • Oppenheim, A. V., & Verghese, G. C. (2017). Signals, systems & inference. London: Pearson
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgi Sistemleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ersoy Mevsim 0000-0002-0879-6424

Reşat Mutlu 0000-0003-0030-7136

Erken Görünüm Tarihi 29 Haziran 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 13 Aralık 2023
Kabul Tarihi 5 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 1

Kaynak Göster

IEEE E. Mevsim ve R. Mutlu, “A Microcontroller-Based Signal Generator With High Output Current”, TUJES, c. 25, sy. 1, ss. 1–9, 2024, doi: 10.59314/tujes.1404236.