Araştırma Makalesi
BibTex RIS Kaynak Göster

Energy Efficiency Analysis of Waste Heat Recovery Applied to a Hot Water Boiler in a Public Building

Yıl 2024, Cilt: 25 Sayı: 1, 53 - 64
https://doi.org/10.59314/tujes.1422282

Öz

As a result of many applications in industrial plants and mechanical systems in public buildings, waste heat is generated, and significant amounts of energy and money can be saved by using this waste heat for different useful purposes in the enterprise before it is discharged into the atmosphere. In this project, the energy efficiency of the hot water boiler used in the heating system of the public building has been investigated. Within the scope of efficiency-enhancing applications, it has been determined at which rates savings will be achieved by utilising waste heat. The exhaust gases leaving the boiler at high temperature can be used in a heat exchanger and the waste heat can be utilised to heat the combustion air or feed water used in the boiler. The chimney of the hot water boiler system examined is proposed as economiser for heat recovery. Savings are achieved by not using fuel equivalent to the recovered energy. The cost analysis was calculated using the payback period method. Annual monetary savings of 29,049.0 USD/year were calculated in the economiser system. If economiser boiler is used in the public building, the payback period of the improvements will be 0.13 years.

Etik Beyan

This study was funded by Trakya University Scientific Research Projects Unit (TÜBAP) with Student Scientific Research Support.

Destekleyen Kurum

Trakya University Scientific Research Projects Unit (TÜBAP)

Proje Numarası

TÜBAP-2023/175

Teşekkür

This study was funded by Trakya University Scientific Research Projects Unit (TÜBAP) with Student Scientific Research Support.

Kaynakça

  • Andersson, E., Thollander, P. (2019). Key performance indicators for energy management in the Swedish pulp and paper industry, Energy Strategy Reviews, 24, 229-235.
  • Ates, S.A., Durakbasa, N.M. (2012). Evaluation of corporate energy management practices of energy intensive industries in Turkey. Energy, 45, 81-91.
  • Backlund, S., Broberg, S., Ottosson, M., Thollander, P. (2012). Energy efficiency potentials and energy management practices in Swedish firms (5-055-12), ECEEE Ind. Sıcak summer Study, 669–677.
  • Can, A. (2011). Binaların En Az Enerji İle Isıtılmasının veya Soğutulmasının Termodinamik Birinci ve İkinci Yasalarına Göre Değerlendirilmesi. X. Ulusal Tesisat Mühendisliği Kongresi – 13/16 Nisan 2011/İzmir.
  • Cagno, E., Worrel,l E., Trianni, A., Pugliese, G. (2013). A novel approach for barriers to industrial energy efficiency. Renew Sıcak sustain Energy Rev., 19, 290-308.
  • Chen, B., Ye, X., Shen, J., Wang, S., Deng, S., & Yang, J. (2021). Investigations on the energy efficiency limits for industrial boiler operation and technical requirements—taking China’s Hunan province as an example. Energy, 220, 119672.
  • Enerji Yöneticisi Ders Notları, T.C. Enerji ve tabii Kaynaklar Bakanlığı Enerji Verimliliği ve Çevre Dairesi Başkanlığına, 2021.
  • Hasanbeigi, A., Menke, C., Therdyothin, A. (2011). Technical and cost assessment of energy efficiency improvement and greenhouse gas emission reduction potentials in Thai cement industry. Energy Efficiency, 4, 93-113
  • Hasan, A.M., Hoq, M.T., Thollander, P. (2018). Energy management practices in Bangladesh’s iron and steel industries. Energy strategy reviews, 22, 230- 236.
  • Hasan, A., Rokonuzzaman, M., Tuhin, R.A., Salimullah, S.M., Ullah, M., Sakib, T.H. (2019). Drivers and barriers to industrial energy efficiency in textile industries of Bangladesh. Energies, 12, 1775.
  • Hossain, S.R., Istiak, A., Ferdous, S., Azad, A.S.M., Monjurul, H. (2020). Empirical investigation of energy management practices in cement industries of Bangladesh, Energy, 212, 118741. IEA - International Energy Agency. (2018). Energy Efficiency 2018: Analysis and Outlooks to 2040. in: Market Report Series. IEA/OECD. Ingarao, G., 2017.
  • Karlsson, M., Gebremedhin, A., Klugman, S., Henning, D., Moshfegh, B. (2009). Regional energy system optimization – potential for a regional heat market. Appl Energy, 86(4):441–451.
  • Klugman. S., Karlsson, M., Moshfegh, B. (2009). A Swedish integrated pulp and paper mill – energy optimisation and local heat cooperation. Energy Pol, 37(7):2514–24.
  • Lozano, F.J., Lozano, R., Freire, P., Jimenez-Gonzalez, C., Sakao, T., Ortiz, M.G. (2018). New perspectives for green and sıcak sustainable chemistry and engineering: approaches from sıcak sustainable resource and energy use, management, and transformation. J Clean Prod, 172, 227-232.
  • Marshman, D.J., Chmelyk, T., Sidhu, M.S., Dumont, G.A. (2010). Energy optimization in a pulp and paper mill cogeneration facility. Appl Energy, 87, 3514–3525.
  • Rudberg, M., Waldemarsson, M., Lidestam, H. (2013). Strategic perspectives on energy management: A case study in the process industry, Applied Energy, 104, 487-496.
  • Satyavada, H., & Baldi, S. (2018). Monitoring energy efficiency of condensing boilers via hybrid first principle modelling and estimation. Energy, 142, 121-129.
  • Schulz, V., Stehfest, H. (1984). Regional energy sıcak supply optimization with multiple objectives. Eur J Operat Res. 17(3):302–12.
  • Tesema, G., Worrell, E. (2015). Energy efficiency improvement potentials for the cement industry in Ethiopia. Energy, 93, 2042-2052.
  • Thollander, P., Ottosson, M. (2010). Energy management practices in Swedish energy intensive industries. J Clean Prod., 18, 1125-1133.
  • Thollander, P., Danestig, M., Rohdin, P. (2007). Energy policies for increased industrial energy efficiency: evaluation of a local energy programme for manufacturing SMEs. Energy Pol., 35(11):5774–5783.
  • Wang, Y., Zou, Z., Lu, K., Li, Q., Hu, P., & Wang, D. (2024). Modeling for on-line monitoring of carbon burnout coefficient in boiler under partial load. Energy, 288, 129859.
  • Worrell, E., Martin, N., Price, L. (2000). Potentials for energy efficiency improvement in the US cement industry. Energy, 25, 1189-1214.
  • Worrell, E., Bernstein, L., Roy, J., Price, L., Harnisch, J. (2009). Industrial energy efficciency and climate change mitigation. Energy Eff., 2, 109–123.
  • Yang, H., Lin, X., Pan, H., Geng, S., Chen, Z., & Liu, Y. (2023). Energy saving analysis and thermal performance evaluation of a hydrogen-enriched natural gas-fired condensing boiler. International Journal of Hydrogen Energy, 48(50), 19279-19296.
  • Yin, R.K. (2009). Case study research: design and methods. 4th ed. Thousand Oaks, CA: SAGE Inc.
  • Zhang, S., Worrell, E., Crijns-Graus, W. (2015). Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Appl Energy, 147, 192-213.

Bir Kamu Binasındaki Sıcak Su Kazanına Uygulanan Atık Isı Geri Kazanımının Enerji Verimliliği Analizi

Yıl 2024, Cilt: 25 Sayı: 1, 53 - 64
https://doi.org/10.59314/tujes.1422282

Öz

Endüstriyel tesislerde birçok uygulama sonucunda ve kamu binalarında mekanik sistemlerde atık ısı meydana gelir ve bu atık ısının atmosfere atılmadan önce işletmede farklı faydalı amaçlar için kullanılması ile önemli miktarlarda enerji ve para tasarrufu sağlanabilir. Bu projede kamu binasının ısıtma sisteminde kullanılan sıcak su kazanının enerji verimliliği incelemesi yapılmıştır. Verim arttırıcı uygulamalar kapsamında atık ısıdan faydalanarak hangi oranlarda tasarruf sağlanacağı belirlenmiştir. Yüksek sıcaklıkta baca gazlarını bir ısı eşanjöründe kullanılıp atık ısı değerlendirilerek, kazanda kullanılan yakma havasının veya besleme suyunun ısıtılması sağlanabilir. İncelenen sıcak su kazanı sisteminin bacası ısı geri kazanımı yapılacak şekilde, ekonomizerli olarak önerilmektedir. Geri kazanılan enerjinin karşılığı kadar yakıt kullanılmayarak tasarruf sağlanmaktadır. Maliyet analizi geri ödeme süresi yöntemi kullanılarak hesaplanmıştır. Ekonomizerli sistemde yıllık 29.049,0 USD/yıl parasal tasarruf hesaplanmıştır. Eğer incelenen kamu binasında ekonomizerli kazan kullanılırsa, iyileştirmelerin geri ödeme süresi 0,13 yıl olacaktır.

Etik Beyan

Bu çalışma, Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP) tarafından Öğrenci Bilimsel Araştırma Desteği ile finanse edilmiştir.

Destekleyen Kurum

Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP)

Proje Numarası

TÜBAP-2023/175

Teşekkür

Bu çalışma, Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP) tarafından Öğrenci Bilimsel Araştırma Desteği ile finanse edilmiştir.

Kaynakça

  • Andersson, E., Thollander, P. (2019). Key performance indicators for energy management in the Swedish pulp and paper industry, Energy Strategy Reviews, 24, 229-235.
  • Ates, S.A., Durakbasa, N.M. (2012). Evaluation of corporate energy management practices of energy intensive industries in Turkey. Energy, 45, 81-91.
  • Backlund, S., Broberg, S., Ottosson, M., Thollander, P. (2012). Energy efficiency potentials and energy management practices in Swedish firms (5-055-12), ECEEE Ind. Sıcak summer Study, 669–677.
  • Can, A. (2011). Binaların En Az Enerji İle Isıtılmasının veya Soğutulmasının Termodinamik Birinci ve İkinci Yasalarına Göre Değerlendirilmesi. X. Ulusal Tesisat Mühendisliği Kongresi – 13/16 Nisan 2011/İzmir.
  • Cagno, E., Worrel,l E., Trianni, A., Pugliese, G. (2013). A novel approach for barriers to industrial energy efficiency. Renew Sıcak sustain Energy Rev., 19, 290-308.
  • Chen, B., Ye, X., Shen, J., Wang, S., Deng, S., & Yang, J. (2021). Investigations on the energy efficiency limits for industrial boiler operation and technical requirements—taking China’s Hunan province as an example. Energy, 220, 119672.
  • Enerji Yöneticisi Ders Notları, T.C. Enerji ve tabii Kaynaklar Bakanlığı Enerji Verimliliği ve Çevre Dairesi Başkanlığına, 2021.
  • Hasanbeigi, A., Menke, C., Therdyothin, A. (2011). Technical and cost assessment of energy efficiency improvement and greenhouse gas emission reduction potentials in Thai cement industry. Energy Efficiency, 4, 93-113
  • Hasan, A.M., Hoq, M.T., Thollander, P. (2018). Energy management practices in Bangladesh’s iron and steel industries. Energy strategy reviews, 22, 230- 236.
  • Hasan, A., Rokonuzzaman, M., Tuhin, R.A., Salimullah, S.M., Ullah, M., Sakib, T.H. (2019). Drivers and barriers to industrial energy efficiency in textile industries of Bangladesh. Energies, 12, 1775.
  • Hossain, S.R., Istiak, A., Ferdous, S., Azad, A.S.M., Monjurul, H. (2020). Empirical investigation of energy management practices in cement industries of Bangladesh, Energy, 212, 118741. IEA - International Energy Agency. (2018). Energy Efficiency 2018: Analysis and Outlooks to 2040. in: Market Report Series. IEA/OECD. Ingarao, G., 2017.
  • Karlsson, M., Gebremedhin, A., Klugman, S., Henning, D., Moshfegh, B. (2009). Regional energy system optimization – potential for a regional heat market. Appl Energy, 86(4):441–451.
  • Klugman. S., Karlsson, M., Moshfegh, B. (2009). A Swedish integrated pulp and paper mill – energy optimisation and local heat cooperation. Energy Pol, 37(7):2514–24.
  • Lozano, F.J., Lozano, R., Freire, P., Jimenez-Gonzalez, C., Sakao, T., Ortiz, M.G. (2018). New perspectives for green and sıcak sustainable chemistry and engineering: approaches from sıcak sustainable resource and energy use, management, and transformation. J Clean Prod, 172, 227-232.
  • Marshman, D.J., Chmelyk, T., Sidhu, M.S., Dumont, G.A. (2010). Energy optimization in a pulp and paper mill cogeneration facility. Appl Energy, 87, 3514–3525.
  • Rudberg, M., Waldemarsson, M., Lidestam, H. (2013). Strategic perspectives on energy management: A case study in the process industry, Applied Energy, 104, 487-496.
  • Satyavada, H., & Baldi, S. (2018). Monitoring energy efficiency of condensing boilers via hybrid first principle modelling and estimation. Energy, 142, 121-129.
  • Schulz, V., Stehfest, H. (1984). Regional energy sıcak supply optimization with multiple objectives. Eur J Operat Res. 17(3):302–12.
  • Tesema, G., Worrell, E. (2015). Energy efficiency improvement potentials for the cement industry in Ethiopia. Energy, 93, 2042-2052.
  • Thollander, P., Ottosson, M. (2010). Energy management practices in Swedish energy intensive industries. J Clean Prod., 18, 1125-1133.
  • Thollander, P., Danestig, M., Rohdin, P. (2007). Energy policies for increased industrial energy efficiency: evaluation of a local energy programme for manufacturing SMEs. Energy Pol., 35(11):5774–5783.
  • Wang, Y., Zou, Z., Lu, K., Li, Q., Hu, P., & Wang, D. (2024). Modeling for on-line monitoring of carbon burnout coefficient in boiler under partial load. Energy, 288, 129859.
  • Worrell, E., Martin, N., Price, L. (2000). Potentials for energy efficiency improvement in the US cement industry. Energy, 25, 1189-1214.
  • Worrell, E., Bernstein, L., Roy, J., Price, L., Harnisch, J. (2009). Industrial energy efficciency and climate change mitigation. Energy Eff., 2, 109–123.
  • Yang, H., Lin, X., Pan, H., Geng, S., Chen, Z., & Liu, Y. (2023). Energy saving analysis and thermal performance evaluation of a hydrogen-enriched natural gas-fired condensing boiler. International Journal of Hydrogen Energy, 48(50), 19279-19296.
  • Yin, R.K. (2009). Case study research: design and methods. 4th ed. Thousand Oaks, CA: SAGE Inc.
  • Zhang, S., Worrell, E., Crijns-Graus, W. (2015). Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry. Appl Energy, 147, 192-213.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç), Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hacer Akhan 0000-0002-7896-6441

Özgür Özaydın 0009-0005-0369-6466

Samet Özdemir 0009-0000-5658-1914

Proje Numarası TÜBAP-2023/175
Erken Görünüm Tarihi 29 Haziran 2024
Yayımlanma Tarihi
Gönderilme Tarihi 31 Ocak 2024
Kabul Tarihi 28 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 25 Sayı: 1

Kaynak Göster

IEEE H. Akhan, Ö. Özaydın, ve S. Özdemir, “Bir Kamu Binasındaki Sıcak Su Kazanına Uygulanan Atık Isı Geri Kazanımının Enerji Verimliliği Analizi”, TUJES, c. 25, sy. 1, ss. 53–64, 2024, doi: 10.59314/tujes.1422282.