THE EFFECT OF SLOPE AND MATERIAL TYPE OF PHOTOVOLTAIC PANELS ON SYSTEM PERFORMANCE
Yıl 2025,
Cilt: 26 Sayı: 1, 45 - 59, 29.06.2025
Hacer Akhan
,
Emir Emiralioğlu
,
Enis Eşer
,
Ulaş Kıvanç Seçgin
,
Kaan Berkay Karabıyık
,
Kani Başar Yenici
Öz
In addition to economical energy use, energy management aims to minimise losses during energy production and convert as much energy as possible into useful energy. In this respect, designing and operating energy generation systems that consider parameters affecting efficiency is important for increasing useful energy. The slope and the type of material used in photovoltaic panels affect the energy production and efficiency of the photovoltaic system. PV panels operate most efficiently when they are tilted at an angle that makes the sun's rays perpendicular to them. Therefore, correctly adjusting the slope is crucial for maximising annual energy production. This study comprehensively and in detail investigates the effects of PV panel slope and material type (monocrystalline or polycrystalline) on system performance in Edirne climate conditions. During the experimental studies, each PV panel was operated under the same ambient and operating conditions simultaneously. The optimum slope for photovoltaic panels in Edirne province was determined by experimental analysis. Additionally, a numerical analysis was performed on each panel using RETScreen software.
Etik Beyan
This study was funded by Trakya University Scientific Research Projects Unit (TÜBAP) with Student Scientific Research Support (Project No: TÜBAP-2025/50).
Destekleyen Kurum
Trakya University Scientific Research Projects Unit (TÜBAP)
Proje Numarası
TÜBAP 2025/50
Teşekkür
We would like to thank the Rectorate of Trakya University for their financial support.
Kaynakça
-
Arslan, M. (2023). Fotovoltaik sistemlerde optimum eğim ve yönlendirme açılarının belirlenmesi. T.C. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 147.
-
Afzaal, M., & O'Brien, P. (2006). Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J Mater Chem, 17.
-
Barbón, A., Ghodbane, M., Bayón, L., & Said, Z. (2022). A general algorithm for the optimization of photovoltaic modules layout on irregular rooftop shapes. Journal of Cleaner Production, 365, 132774. https://doi.org/10.1016/j.jclepro.2022.132774
-
Bilgili, M. E., & Dağtekin, M. (2017). Fotovoltaik piller ile elektrik üretiminde uygun eğim açısının ve yıllık oluşan enerji farkının belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi (GBAD), 156–167.
-
Chang, Y. P. (2010). Optimal the tilt angles for photovoltaic modules in Taiwan. International Journal of Electrical Power & Energy Systems, 32(9), 956–964.
-
Cooper, P. I. (1969). The absorption of radiation in solar stills. Solar Energy, 12(3), 333–346. https://doi.org/10.1016/0038-092x(69)90047-4
-
Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118671603
-
Geliş, K., Akyürek, E. F., & Yoladı, M. (2020). Panel konumu ve açısının fotovoltaik panel karakteristiği üzerine etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 1899–1908.
-
Grygiel, P., Tarłowski, J., Prześniak-Welenc, M., Łapiński, M., Łubiński, J., & Mielewczyk-Gryń, A., et al. (2021). Prototype design and development of low-load-roof photovoltaic modules for applications in on-grid systems. Solar Energy Materials and Solar Cells, 233, 111384. https://doi.org/10.1016/j.solmat.2021.111384
-
IEA - International Energy Agency. (2018). Energy Efficiency 2018: Analysis and Outlooks to 2040. Market Report Series, IEA/OECD.
-
Khahro, S. F. (2015). Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan. International Journal of Electrical Power & Energy Systems, 64, 1073–1080.
-
Kuczynski, W., & Chliszcz, K. (2023). Energy and exergy analysis of photovoltaic panels in northern Poland. Renewable and Sustainable Energy Reviews, 174, 113138.
-
Liu, R., Liu, Z., Xiong, W., Zhang, L., Zhao, C., & Yin, Y. (2024). Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts. Energy, 288, 129708. https://doi.org/10.1016/j.energy.2023.129708
-
Liu, Y. H. B., & Jordan, C. R. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, 4(3), 1–19.
-
Mondol, D. J., Yohanis, G. Y., & Norton, B. (2008). Solar radiation modelling for the simulation of photovoltaic systems. Solar Energy, 33(5), 1109–1120.
-
Nagengast, A., Hendrickson, C., & Matthews, H. S. (2013). Variations in photovoltaic performance due to climate and low-slope roof choice. Energy and Buildings.
-
Navntoft, L. C. (2012). UV solar radiation on a tilted and horizontal plane: Analysis and comparison of 4 years of measurements. Solar Energy, 86(1), 307–318.
-
Qu, H., Du, Z., & Kong, Q. (2024). Experimental study on the effect of tilt angle on the output parameters of a photovoltaic-phase change material (PV-PCM) system under wind conditions. Journal of Energy Storage, 102, 114263. https://doi.org/10.1016/j.est.2024.114263
-
Ruan, T., Wang, F., Topel, M., Laumert, B., & Wang, W. (2024). A new optimal PV installation angle model in high-latitude cold regions based on historical weather big data. Applied Energy, 359, 122690. https://doi.org/10.1016/j.apenergy.2024.122690
-
Salari, M., & Javaran, E. (2017). Optimising the tilt angle for solar surfaces using different solar irradiation models in Yazd. Renewable Energy, 323–331.
-
Şen, Z. (2008). Solar energy in progress and future research trends. Progress in Energy and Combustion Science, 30(4), 367–416.
-
Senpınar, A. (2018). Exergetic, energetic and environmental dimensions. Chapter 2.16: Optimization of slope angles. http://dx.doi.org/10.1016/B978-0-12-813734-5.00028-7
-
Shanmugan, S., Hammoodii, K. A., Eswarlal, T., Selvaraju, P., Bendoukha, S., Nabil Barhoumi, N., Mansour, M., Refaey, H. A., Rao, M. C., Mourad, A. H., Fujii, M., & Elsheikh, A. (2024). A technical appraisal of solar photovoltaic-integrated single slope single basin solar still for simultaneous energy and water generation. Case Studies in Thermal Engineering, 54, 104032. https://doi.org/10.1016/j.csite.2024.104032
FOTOVOLTAİK PANELLERİN EĞİM AÇISININ VE MALZEME ÇEŞİDİNİN SİSTEM PERFORMANSI ÜZERİNE ETKİSİ
Yıl 2025,
Cilt: 26 Sayı: 1, 45 - 59, 29.06.2025
Hacer Akhan
,
Emir Emiralioğlu
,
Enis Eşer
,
Ulaş Kıvanç Seçgin
,
Kaan Berkay Karabıyık
,
Kani Başar Yenici
Öz
Enerji yönetimi, enerjiyi tasarruflu kullanmanın yanında enerjiyi üretirken kayıpları en düşük oranda tutup mümkün olan en yüksek enerjiyi faydalı enerjiye dönüştürmeyi amaçlar. Bu doğrultuda enerji üretim sistemlerinin verimi etkileyen parametreler dikkate alınarak tasarlanıp işletilmesi, faydalı enerjinin artırılması açısından önem kazanır. Eğim açısı ve fotovoltaik panellerde kullanılan malzeme çeşidi, fotovoltaik sistem enerji üretimini ve verimini etkileyen parametrelerdir. PV paneller en yüksek verime, güneş ışınlarının dik geldiği açıda çalıştığında ulaşır. Bu nedenle, eğim açısının doğru ayarlanması, yıllık enerji üretiminin maksimuma ulaşabilmesi için oldukça önemlidir. Bu çalışmada, Edirne iklim koşulları için fotovoltaik panel eğim açısının, monokristal ve polikristal malzeme çeşitlerinin sistem performansı üzerine etkisi ayrıntılı ve kapsamlı olarak incelenmiştir. Deneysel çalışmalar yapılırken her bir PV panel eş zamanlı olarak aynı ortam ve işletme koşullarında çalıştırılmıştır. Edirne ili için fotovoltaik panel optimum eğim açısı deneysel olarak analizlerle tespit edilmiştir. Ayrıca her bir panel için RETScreen yazılımı kullanılarak nümerik analiz yapılmıştır.
Etik Beyan
Bu çalışma, Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP) tarafından Öğrenci Bilimsel Araştırma Desteği ile finanse edilmiştir (Proje No: TÜBAP-2025/50).
Destekleyen Kurum
Trakya Üniversitesi Bilimsel Araştırma Projeleri Birimi (TÜBAP)
Proje Numarası
TÜBAP 2025/50
Teşekkür
Trakya Üniversitesi Rektörlüğüne mali desteklerinden dolayı teşekkürlerimizi sunarız.
Kaynakça
-
Arslan, M. (2023). Fotovoltaik sistemlerde optimum eğim ve yönlendirme açılarının belirlenmesi. T.C. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, 147.
-
Afzaal, M., & O'Brien, P. (2006). Recent developments in II–VI and III–VI semiconductors and their applications in solar cells. J Mater Chem, 17.
-
Barbón, A., Ghodbane, M., Bayón, L., & Said, Z. (2022). A general algorithm for the optimization of photovoltaic modules layout on irregular rooftop shapes. Journal of Cleaner Production, 365, 132774. https://doi.org/10.1016/j.jclepro.2022.132774
-
Bilgili, M. E., & Dağtekin, M. (2017). Fotovoltaik piller ile elektrik üretiminde uygun eğim açısının ve yıllık oluşan enerji farkının belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi (GBAD), 156–167.
-
Chang, Y. P. (2010). Optimal the tilt angles for photovoltaic modules in Taiwan. International Journal of Electrical Power & Energy Systems, 32(9), 956–964.
-
Cooper, P. I. (1969). The absorption of radiation in solar stills. Solar Energy, 12(3), 333–346. https://doi.org/10.1016/0038-092x(69)90047-4
-
Duffie, J. A., & Beckman, W. A. (2013). Solar Engineering of Thermal Processes. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118671603
-
Geliş, K., Akyürek, E. F., & Yoladı, M. (2020). Panel konumu ve açısının fotovoltaik panel karakteristiği üzerine etkisi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 1899–1908.
-
Grygiel, P., Tarłowski, J., Prześniak-Welenc, M., Łapiński, M., Łubiński, J., & Mielewczyk-Gryń, A., et al. (2021). Prototype design and development of low-load-roof photovoltaic modules for applications in on-grid systems. Solar Energy Materials and Solar Cells, 233, 111384. https://doi.org/10.1016/j.solmat.2021.111384
-
IEA - International Energy Agency. (2018). Energy Efficiency 2018: Analysis and Outlooks to 2040. Market Report Series, IEA/OECD.
-
Khahro, S. F. (2015). Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan. International Journal of Electrical Power & Energy Systems, 64, 1073–1080.
-
Kuczynski, W., & Chliszcz, K. (2023). Energy and exergy analysis of photovoltaic panels in northern Poland. Renewable and Sustainable Energy Reviews, 174, 113138.
-
Liu, R., Liu, Z., Xiong, W., Zhang, L., Zhao, C., & Yin, Y. (2024). Performance simulation and optimization of building façade photovoltaic systems under different urban building layouts. Energy, 288, 129708. https://doi.org/10.1016/j.energy.2023.129708
-
Liu, Y. H. B., & Jordan, C. R. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, 4(3), 1–19.
-
Mondol, D. J., Yohanis, G. Y., & Norton, B. (2008). Solar radiation modelling for the simulation of photovoltaic systems. Solar Energy, 33(5), 1109–1120.
-
Nagengast, A., Hendrickson, C., & Matthews, H. S. (2013). Variations in photovoltaic performance due to climate and low-slope roof choice. Energy and Buildings.
-
Navntoft, L. C. (2012). UV solar radiation on a tilted and horizontal plane: Analysis and comparison of 4 years of measurements. Solar Energy, 86(1), 307–318.
-
Qu, H., Du, Z., & Kong, Q. (2024). Experimental study on the effect of tilt angle on the output parameters of a photovoltaic-phase change material (PV-PCM) system under wind conditions. Journal of Energy Storage, 102, 114263. https://doi.org/10.1016/j.est.2024.114263
-
Ruan, T., Wang, F., Topel, M., Laumert, B., & Wang, W. (2024). A new optimal PV installation angle model in high-latitude cold regions based on historical weather big data. Applied Energy, 359, 122690. https://doi.org/10.1016/j.apenergy.2024.122690
-
Salari, M., & Javaran, E. (2017). Optimising the tilt angle for solar surfaces using different solar irradiation models in Yazd. Renewable Energy, 323–331.
-
Şen, Z. (2008). Solar energy in progress and future research trends. Progress in Energy and Combustion Science, 30(4), 367–416.
-
Senpınar, A. (2018). Exergetic, energetic and environmental dimensions. Chapter 2.16: Optimization of slope angles. http://dx.doi.org/10.1016/B978-0-12-813734-5.00028-7
-
Shanmugan, S., Hammoodii, K. A., Eswarlal, T., Selvaraju, P., Bendoukha, S., Nabil Barhoumi, N., Mansour, M., Refaey, H. A., Rao, M. C., Mourad, A. H., Fujii, M., & Elsheikh, A. (2024). A technical appraisal of solar photovoltaic-integrated single slope single basin solar still for simultaneous energy and water generation. Case Studies in Thermal Engineering, 54, 104032. https://doi.org/10.1016/j.csite.2024.104032