Impact of an Experimental Remineralizing Agent Incorporating Bioactive Glass on Enamel Hardness
Yıl 2024,
Cilt: 3 Sayı: 2, 357 - 366, 30.08.2024
İdil Gönüllü
,
Hande Kemaloglu
,
Cem Peşkersoy
,
Houman Golchin
,
Murat Turkun
Öz
Aim: The aim of this in vitro study was to investigate the effect of an experimental remineralization agent containing bioactive glass on the surface hardness of enamel.
Material and Method: A total of thirty samples were prepared for our investigation. After being embedded in acrylic, these samples were randomly divided into three groups and treated with three different methods: G1. Casein phosphopeptide-amorphous calcium phosphate [GC Tooth Mousse]; G2. Experimental remineralization agent containing bioactive glass; G3. Artificial saliva solution. The samples
underwent demineralization using 37% phosphoric acid for a duration of 30 seconds prior to the application of remineralization agents. Then the agents were administered twice daily for a period of 5 minutes. Following the removal of the agents, the samples were stored in artificial saliva until the subsequent procedure. The process was repeated daily for a duration of 10 days. The surface hardness of the samples was assessed on three separate times in total: initially, following demineralization, and after remineralization, using Vickers microhardness testing.
Results: After demineralization with phosphoric acid, the groups’ microhardness values significantly decreased (p<0.05). Microhardness increased significantly in the test groups after remineralization, but not in the control group (p>0.05). When evaluating both remineralization agents, no statistically
significant disparity was observed in the microhardness increases they induced on the enamel surface.
Conclusion: Bioactive glass significantly increased demineralized enamel surface microhardness, according to the study. However, the experimental remineralizastion agent’s physical and biological properties need further study. Additionally, demineralized enamel surfaces did not become
harder with artificial saliva solution alone.
Kaynakça
- 1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Wein-traub JA,
Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primers.
2017;3(1):17030.
- 2. Arrica M, Carta G, Cocco F, et al. Does a social/behavioural
gradient indental health exist among adults? A crosssectional
study. J Int Med Res.2017;45:451–61.
- 3. Krasse B. Die Quintessenz des Kariesrisikos.
Berlin:Quintessenz-Verl., 1986.
- 4. Laurisch L. Die Bestimmung des individuellen
Kariesrisikos– Voraussetzung für eine Prophylaxe nach
Maß.Oralprophylaxe 1988;10:126–133.
- 5. J.A. Chapman, W.E. Roberts, G.J. Eckert, K.S. Kula,
C. González-Cabezas, Risk factors for incidence and
severity of white spot lesions during treatment with fixed
orthodontic appliances, Am. J. Orthod. Dentofac. Orthop.
(2010);138:188–194.
- 6. K. Srivastava, T. Tikku, R. Khanna, K. Sachan, Risk factors
and management of white spot lesions in orthodontics, J.
Orthodontic Sci. (2013) 2: 43–49.
- 7. Taştan E, Güler E, Bal FA Farklı Remineralizasyon
Ajanlarının Lazer ve Ozon Tedavisi İle Kombine
Kullanımının Başlangıç Çürüklerine Etkisinin İn-Vitro
Olarak İncelenmesi. Turkiye Klinikleri J Dental Sci.
2021;27(2):269-79.
- 8. Philip N. State of the Art Enamel Remineralization
Systems: The Next Frontier in Caries Management. Caries
Res. 2019;53(3):284-295.
- 9. Retief DH, Bradley EL, Holbrook M, Switzer P. Enamel
fluoride uptake, distribution and retention from topical
fluoride agents. Caries Res. 1983;17(1):44-51.
- 10. Chambers C, Stewart S, Su B, Sandy J, Ireland A,
Prevention and treatment of demineralisation during fixed
appliance therapy: a review of current methods and future
applications, Br. Dent. J. 2013;215(10):505–11.
- 11. Uysal S, Tulga Öz FT. Süt Dişi Başlangıç Mine
Lezyonlarının Remineralizasyonunda Kullanılan Farklı
Yapıdaki Diş Macunlarının Mikrosertlik Üzerine Etkisinin
İn Vitro Koşullarda Değerlendirilmesi Selcuk Dent J, 2022;
9: 533-539.
- 12. Akbarzade T, Farmany A, Farhadian M, Khamverdi Z,
Dastgir R. Synthesis and characterization of nano bioactive
glass for improving enamel remineralization ability of
casein phosphopeptide-amorphous calcium phosphate
(CPP-ACP). BMC Oral Health. 2022 24;22(1):525.
- 13. Bhadoria N, Gunwal MK, Kukreja R, Maran S,
Devendrappa SN, Singla S. An In Vitro Evaluation of
Remineralization Potential of Functionalized Tricalcium
Phosphate Paste and CPP-ACPF on Artificial White Spot
Lesion in Primary and Permanent Enamel. Int J Clin Pediatr
Dent. 2020 ;13(6):579-584.
- 14. Taha AA, Patel MP, Hill RG, Fleming PS. The effect of
bioactive glasses on enamel remineralization: A systematic
review. J Dent. 2017;67:9-17.
- 15. Körner P, Schleich JA, Wiedemeier DB, Attin T, Wegehaupt
FJ. Effects of Additional Use of Bioactive Glasses or
a Hydroxyapatite Toothpaste on Remineralization of
Artificial Lesions in vitro. Caries Res. 2020;54(4):336-342.
- 16. Tirapelli C, Panzeri H, Lara EH, Soares RG, Peitl O,
Zanotto ED. The effect of a novel crystallised bioactive
glass-ceramic powder on dentine hypersensitivity: a longterm
clinical study. 2011;38(4):253–262.
- 17. Grohe B, Mittler S. Advanced non-fluoride approaches to
dental enamel remineralization: The next level in enamel
repair management. Biomater Biosyst. 2021;4:100029.
- 18. Philip N. State of the art enamel remineralization systems:
the next frontier in caries management. Caries Res
2019;53:284–95.
- 19. Yavuz BS, Kargul B. Comparative evaluation of the spectraldomain
optical coherence tomography and microhardness
for remineralization of enamel caries lesions. Dent Mater J.
2021;40(5):1115-1121.
- 20. Alafifi A, Yassen AA, Hassanein OE. Effectiveness
of polyacrylic acid-bioactive glass air abrasion
preconditioning with NovaMin remineralization on the
microhardness of incipient enamel-like lesion. J Conserv
Dent. 2019;22(6):548-553.
- 21. Chuenarrom C, Benjakul P, Daosodsai P. Effect
of indentation load and time on knoop and vickers
microhardness tests for enamel and dentin. Mat Res.
2009;12(4):473–76.
- 22. Gutiérrez-Salazar P, Reyes-Gasga J. Microhardness
and chemical composition of human tooth. Mat Res.
2003;6(3):367–73.
- 23. Salinovic I, Schauperl Z, Marcius M, Miletic I. The Effects
of Three Remineralizing Agents on the Microhardness
and Chemical Composition of Demineralized Enamel.
Materials. 2021;14(20):6051.
- 24. Almqvist H, Lagerlöf F. Influence of constant fluoride levels in solution on root hard tissue de- and
remineralization measured by 125I absorptiometry. Caries
Res. 1993;27(2):100-5.
- 25. Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M,
Young AM, Bozec L, Mudera V. Demineralizationremineralization
dynamics in teeth and bone. Int J
Nanomed. 2016;11:4743–4763
- 26. Featherstone JD, Duncan JF, Cutress TW. A mechanism
for dental caries based on chemical processes and diffusion
phenomena during in-vitro caries simulation on human
tooth enamel. Arch Oral Biol. 1979;24(2):101–112.
- 27. Faran Ali SM, Tanwir F: Oral microbial habitat a dynamic
entity. J Oral Biol Craniofac Res. 2012; 2(3): 181–187.
- 28. Farooq I, Bugshan A. The role of salivary contents and
modern technologies in the remineralization of dental
enamel: a narrative review. F1000Res. 2020;9:9:171.
- 29. Ionta FQ, Mendonça FL, de Oliveira GC, de Alencar CR,
Honório HM, Magalhães AC, Rios D. In vitro assessment
of artificial saliva formulations on initial enamel erosion
remineralization. J Dent. 2014;42(2):175-9.
- 30. Amaechi BT, Higham SM. In vitro remineralisation of
eroded enamel lesions by saliva. J Dent. 2001;29(5):371-6.
- 31. Schlueter N, Amaechi BT, Bartlett D, Buzalaf MAR,
Carvalho TS, Ganss C, Hara AT, Huysmans MDNJM,
Lussi A, Moazzez R, Vieira AR, West NX, Wiegand A,
Young A, Lippert F. Terminology of Erosive Tooth Wear:
Consensus Report of a Workshop Organized by the ORCA
and the Cariology Research Group of the IADR. Caries
Res. 2020;54(1):2-6.
- 32. Bhavsar B, Vijo M, Sharma P, Patnaik T, Alam MK, Patil
S. Comparative assessment of enamel remineralisation on
the surface microhardness of demineralized enamel - an in
vitro study. PeerJ. 2022;10:e14098.
- 33. Sorozini, Perez & Rocha Sorozini M, Perez CR, Rocha
GM. Enamel sample preparation for AFM: influence on
roughness and morphology. 2018;81(9):1071–1076.
- 34. Molaasadolah F, Eskandarion S, Ehsani A, Sanginan M. In
vitro evaluation of enamel microhardness after application
of two types of fluoride varnish. 2017;11:ZC64–ZC66.
- 35. Lata S, Varghese NO, Varughese JM. Remineralization
potential of fluoride and amorphous calcium phosphatecasein
phosphopeptide on enamel lesions: an in vitro
comparative evaluation. 2010;13(1):42–46.
- 36. Rose RK. Effects of anticariogenic casein phosphopeptide
on calcium diffusion in streptococcal model dental plaque.
2000;45(7):569–575.
- 37. Soares R, De Ataide IDN, Fernandes M, Lambor R.
Assessment of enamel remineralisation after treatment with
four different remineralising agents: a scanning electron
microscopy (SEM) study. 2017;11(4):ZC136–ZC141.
- 38. Caruana PC, Mulaify SA, Moazzez R, Bartlett D. The
effect of casein and calcium containing paste on plaque
pH following a subsequent carbohydrate challenge. J Dent
2009; 37: 522-6.
- 39. Zhang Q, Zo J, Yang R, Zhou X. Remineralization effects
of casein phosphopeptide‐amorphous calcium phosphate
crème on artificial early enamel lesions of primary teeth.
Int J Paediatr Dent 2011; 21(5), 374-381.
- 40. Kanwal N, Brauer DS, Earl J, Wilson RM, Karpukhina N,
Hill RG. In-vitro apatite formation capacity of a bioactive
glass - containing toothpaste. J Dent. 2018;68:51-58.
- 41. Iijima M, Hashimoto M, Kohda N, Nakagaki S, Muguruma
T, Endo K, Mizoguchi I. Crystal growth on bioactive glass
sputter-coated alumina in artificial saliva. Dent Mater J.
2013;32(5):775-80.
- 42. Roy S, Basu B. In vitro dissolution behavior of SiO2-MgOAl2O
3-K2O-B2O3-F glass-ceramic system. J Mater Sci
Mater Med. 2008;19(9):3123-33.
- 43. Mitchell, Musanje & Ferracane Mitchell JC, Musanje
L, Ferracane JL. Biomimetic dentin desensitizer based
on nano-structured bioactive glass. Dental Materials.
2011;27(4):386–393.
- 44. Srivastava, Choudhary, E. Assessment of Enamel
Remineralising Capability of Three Different
Remineralising Agents Using Vicker’s Surface
Microhardness Test.Int. J. Pharm. Bio. Sci. 2019;10:151–
157.
- 45. Geeta RD, Vallabhaneni S, Fatima K. Comparative
evaluation of remineralization potential of
nanohydroxyapatite crystals, bioactive glass, casein
phosphopeptide-amorphous calcium phosphate, and
fluoride on initial enamel lesion (scanning electron
microscope analysis) -An in vitro study. J Conserv Dent.
2020;23(3):275-279.
- 46. Deswal R, Kukreja N, Chhabra S, Trivedi S, Sharma
A, Thakur A. Comparative Assessment of Enamel
Microhardness Using Various Remineralising Agents
on Artificially Demineralized Human Enamel. Cureus. 2022;14(10):e30281.
- 47. Haghgou EH, Haghgoo R, Roholahi MR, Ghorbani Z. Effect
of Casein Phosphopeptide-Amorphous Calcium Phosphate
and Three Calcium Phosphate on Enamel Microhardness. J
Contemp Dent Pract. 2017;18(7):583-586.
- 48. Panich M, Poolthong S. The effect of casein phosphopeptideamorphous
calcium phosphate and a cola soft drink on in
vitro enamel hardness. J Am Dent Assoc. 2009;140(4):455-60.
- 49. Ayad AH, AbdelHafez MI, AlGhandour RN, Mustafa
DS, Nour KA. Effect of different surface treatments on
the microhardness and colour change of artificial enamel
lesions. Aust Dent J. 2022;67(3):230-238.
Biyoaktif Cam İçeren Deneysel Bir Remineralizasyon Ajanının Minenin Yüzey Sertliğine Etkisi
Yıl 2024,
Cilt: 3 Sayı: 2, 357 - 366, 30.08.2024
İdil Gönüllü
,
Hande Kemaloglu
,
Cem Peşkersoy
,
Houman Golchin
,
Murat Turkun
Öz
Amaç: Bu in vitro çalışmanın amacı, biyoaktif cam içeren deneysel bir remineralizasyon ajanının minenin yüzey sertliği üzerindeki etkisini araştırmaktır.
Gereç ve Yöntem: Onbeş adet insan 3. molar dişinden toplam otuz adet mine kesiti hazırlandı. Örnekler akrilik içine gömüldükten sonra rastgele üç gruba ayrıldı: G1. Kazein fosfopeptid-amorf kalsiyum fosfat [GC Tooth Mousse]; G2. Biyoaktif cam içeren deneysel remineralizasyon ajanı; G3. Yapay tükürük çözeltisi. Örnekler, remineralizasyon ajanlarının uygulanmasından önce 30 saniye süreyle %37’lik fosforik asit kullanılarak demineralizasyona tabi tutuldu. Daha sonra örneklerin yüzeylerine 5 dakikalık bir süre boyunca günde iki kez olmak üzere remineralizasyon ajanları uygulandı. Ajanların pamuk peletler ile temizlenmesinin ardından, örnekler bir sonraki tekrara kadar yapay bir tükürük çözeltisinde saklandı.
İşlem 10 gün boyunca günlük olarak tekrarlandı. Örneklerin yüzey sertliği Vickers mikrosertlik testi kullanılarak başlangıçta, demineralizasyonu takiben ve remineralizasyondan sonra olmak üzere üç ayrı zamanda değerlendirildi.
Bulgular: Fosforik asitle demineralizasyon sonrasında grupların mikrosertlik değerlerinde anlamlı bir azalma tespit edildi (p<0.05). Remineralizasyon ajanları test gruplarında mikrosertliği arttırırken kontrol grubunda bir artış görülmedi (p>0.05). Her iki remineralizasyon ajanı karşılaştırıldığında, mine yüzeyinde meydana getirdikleri mikrosertlik artışları arasında istatistiksel olarak anlamlı bir fark saptanmadı.
Sonuç: Biyoaktif cam içeren deneysel ajanın demineralize mine yüzeylerinin mikrosertlik değerlerini anlamlı şekilde artırdığı tespit edildi. Ancak, deneysel ajanın fiziksel ve biyolojik özelliklerinin daha ileri araştırmalarla incelenmesi gerekmektedir. Ayrıca, yapay tükürük solüsyonunun tek başına demineralize mine yüzeylerinin sertliğini artırmadığı belirlenmiştir.
Kaynakça
- 1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Wein-traub JA,
Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primers.
2017;3(1):17030.
- 2. Arrica M, Carta G, Cocco F, et al. Does a social/behavioural
gradient indental health exist among adults? A crosssectional
study. J Int Med Res.2017;45:451–61.
- 3. Krasse B. Die Quintessenz des Kariesrisikos.
Berlin:Quintessenz-Verl., 1986.
- 4. Laurisch L. Die Bestimmung des individuellen
Kariesrisikos– Voraussetzung für eine Prophylaxe nach
Maß.Oralprophylaxe 1988;10:126–133.
- 5. J.A. Chapman, W.E. Roberts, G.J. Eckert, K.S. Kula,
C. González-Cabezas, Risk factors for incidence and
severity of white spot lesions during treatment with fixed
orthodontic appliances, Am. J. Orthod. Dentofac. Orthop.
(2010);138:188–194.
- 6. K. Srivastava, T. Tikku, R. Khanna, K. Sachan, Risk factors
and management of white spot lesions in orthodontics, J.
Orthodontic Sci. (2013) 2: 43–49.
- 7. Taştan E, Güler E, Bal FA Farklı Remineralizasyon
Ajanlarının Lazer ve Ozon Tedavisi İle Kombine
Kullanımının Başlangıç Çürüklerine Etkisinin İn-Vitro
Olarak İncelenmesi. Turkiye Klinikleri J Dental Sci.
2021;27(2):269-79.
- 8. Philip N. State of the Art Enamel Remineralization
Systems: The Next Frontier in Caries Management. Caries
Res. 2019;53(3):284-295.
- 9. Retief DH, Bradley EL, Holbrook M, Switzer P. Enamel
fluoride uptake, distribution and retention from topical
fluoride agents. Caries Res. 1983;17(1):44-51.
- 10. Chambers C, Stewart S, Su B, Sandy J, Ireland A,
Prevention and treatment of demineralisation during fixed
appliance therapy: a review of current methods and future
applications, Br. Dent. J. 2013;215(10):505–11.
- 11. Uysal S, Tulga Öz FT. Süt Dişi Başlangıç Mine
Lezyonlarının Remineralizasyonunda Kullanılan Farklı
Yapıdaki Diş Macunlarının Mikrosertlik Üzerine Etkisinin
İn Vitro Koşullarda Değerlendirilmesi Selcuk Dent J, 2022;
9: 533-539.
- 12. Akbarzade T, Farmany A, Farhadian M, Khamverdi Z,
Dastgir R. Synthesis and characterization of nano bioactive
glass for improving enamel remineralization ability of
casein phosphopeptide-amorphous calcium phosphate
(CPP-ACP). BMC Oral Health. 2022 24;22(1):525.
- 13. Bhadoria N, Gunwal MK, Kukreja R, Maran S,
Devendrappa SN, Singla S. An In Vitro Evaluation of
Remineralization Potential of Functionalized Tricalcium
Phosphate Paste and CPP-ACPF on Artificial White Spot
Lesion in Primary and Permanent Enamel. Int J Clin Pediatr
Dent. 2020 ;13(6):579-584.
- 14. Taha AA, Patel MP, Hill RG, Fleming PS. The effect of
bioactive glasses on enamel remineralization: A systematic
review. J Dent. 2017;67:9-17.
- 15. Körner P, Schleich JA, Wiedemeier DB, Attin T, Wegehaupt
FJ. Effects of Additional Use of Bioactive Glasses or
a Hydroxyapatite Toothpaste on Remineralization of
Artificial Lesions in vitro. Caries Res. 2020;54(4):336-342.
- 16. Tirapelli C, Panzeri H, Lara EH, Soares RG, Peitl O,
Zanotto ED. The effect of a novel crystallised bioactive
glass-ceramic powder on dentine hypersensitivity: a longterm
clinical study. 2011;38(4):253–262.
- 17. Grohe B, Mittler S. Advanced non-fluoride approaches to
dental enamel remineralization: The next level in enamel
repair management. Biomater Biosyst. 2021;4:100029.
- 18. Philip N. State of the art enamel remineralization systems:
the next frontier in caries management. Caries Res
2019;53:284–95.
- 19. Yavuz BS, Kargul B. Comparative evaluation of the spectraldomain
optical coherence tomography and microhardness
for remineralization of enamel caries lesions. Dent Mater J.
2021;40(5):1115-1121.
- 20. Alafifi A, Yassen AA, Hassanein OE. Effectiveness
of polyacrylic acid-bioactive glass air abrasion
preconditioning with NovaMin remineralization on the
microhardness of incipient enamel-like lesion. J Conserv
Dent. 2019;22(6):548-553.
- 21. Chuenarrom C, Benjakul P, Daosodsai P. Effect
of indentation load and time on knoop and vickers
microhardness tests for enamel and dentin. Mat Res.
2009;12(4):473–76.
- 22. Gutiérrez-Salazar P, Reyes-Gasga J. Microhardness
and chemical composition of human tooth. Mat Res.
2003;6(3):367–73.
- 23. Salinovic I, Schauperl Z, Marcius M, Miletic I. The Effects
of Three Remineralizing Agents on the Microhardness
and Chemical Composition of Demineralized Enamel.
Materials. 2021;14(20):6051.
- 24. Almqvist H, Lagerlöf F. Influence of constant fluoride levels in solution on root hard tissue de- and
remineralization measured by 125I absorptiometry. Caries
Res. 1993;27(2):100-5.
- 25. Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M,
Young AM, Bozec L, Mudera V. Demineralizationremineralization
dynamics in teeth and bone. Int J
Nanomed. 2016;11:4743–4763
- 26. Featherstone JD, Duncan JF, Cutress TW. A mechanism
for dental caries based on chemical processes and diffusion
phenomena during in-vitro caries simulation on human
tooth enamel. Arch Oral Biol. 1979;24(2):101–112.
- 27. Faran Ali SM, Tanwir F: Oral microbial habitat a dynamic
entity. J Oral Biol Craniofac Res. 2012; 2(3): 181–187.
- 28. Farooq I, Bugshan A. The role of salivary contents and
modern technologies in the remineralization of dental
enamel: a narrative review. F1000Res. 2020;9:9:171.
- 29. Ionta FQ, Mendonça FL, de Oliveira GC, de Alencar CR,
Honório HM, Magalhães AC, Rios D. In vitro assessment
of artificial saliva formulations on initial enamel erosion
remineralization. J Dent. 2014;42(2):175-9.
- 30. Amaechi BT, Higham SM. In vitro remineralisation of
eroded enamel lesions by saliva. J Dent. 2001;29(5):371-6.
- 31. Schlueter N, Amaechi BT, Bartlett D, Buzalaf MAR,
Carvalho TS, Ganss C, Hara AT, Huysmans MDNJM,
Lussi A, Moazzez R, Vieira AR, West NX, Wiegand A,
Young A, Lippert F. Terminology of Erosive Tooth Wear:
Consensus Report of a Workshop Organized by the ORCA
and the Cariology Research Group of the IADR. Caries
Res. 2020;54(1):2-6.
- 32. Bhavsar B, Vijo M, Sharma P, Patnaik T, Alam MK, Patil
S. Comparative assessment of enamel remineralisation on
the surface microhardness of demineralized enamel - an in
vitro study. PeerJ. 2022;10:e14098.
- 33. Sorozini, Perez & Rocha Sorozini M, Perez CR, Rocha
GM. Enamel sample preparation for AFM: influence on
roughness and morphology. 2018;81(9):1071–1076.
- 34. Molaasadolah F, Eskandarion S, Ehsani A, Sanginan M. In
vitro evaluation of enamel microhardness after application
of two types of fluoride varnish. 2017;11:ZC64–ZC66.
- 35. Lata S, Varghese NO, Varughese JM. Remineralization
potential of fluoride and amorphous calcium phosphatecasein
phosphopeptide on enamel lesions: an in vitro
comparative evaluation. 2010;13(1):42–46.
- 36. Rose RK. Effects of anticariogenic casein phosphopeptide
on calcium diffusion in streptococcal model dental plaque.
2000;45(7):569–575.
- 37. Soares R, De Ataide IDN, Fernandes M, Lambor R.
Assessment of enamel remineralisation after treatment with
four different remineralising agents: a scanning electron
microscopy (SEM) study. 2017;11(4):ZC136–ZC141.
- 38. Caruana PC, Mulaify SA, Moazzez R, Bartlett D. The
effect of casein and calcium containing paste on plaque
pH following a subsequent carbohydrate challenge. J Dent
2009; 37: 522-6.
- 39. Zhang Q, Zo J, Yang R, Zhou X. Remineralization effects
of casein phosphopeptide‐amorphous calcium phosphate
crème on artificial early enamel lesions of primary teeth.
Int J Paediatr Dent 2011; 21(5), 374-381.
- 40. Kanwal N, Brauer DS, Earl J, Wilson RM, Karpukhina N,
Hill RG. In-vitro apatite formation capacity of a bioactive
glass - containing toothpaste. J Dent. 2018;68:51-58.
- 41. Iijima M, Hashimoto M, Kohda N, Nakagaki S, Muguruma
T, Endo K, Mizoguchi I. Crystal growth on bioactive glass
sputter-coated alumina in artificial saliva. Dent Mater J.
2013;32(5):775-80.
- 42. Roy S, Basu B. In vitro dissolution behavior of SiO2-MgOAl2O
3-K2O-B2O3-F glass-ceramic system. J Mater Sci
Mater Med. 2008;19(9):3123-33.
- 43. Mitchell, Musanje & Ferracane Mitchell JC, Musanje
L, Ferracane JL. Biomimetic dentin desensitizer based
on nano-structured bioactive glass. Dental Materials.
2011;27(4):386–393.
- 44. Srivastava, Choudhary, E. Assessment of Enamel
Remineralising Capability of Three Different
Remineralising Agents Using Vicker’s Surface
Microhardness Test.Int. J. Pharm. Bio. Sci. 2019;10:151–
157.
- 45. Geeta RD, Vallabhaneni S, Fatima K. Comparative
evaluation of remineralization potential of
nanohydroxyapatite crystals, bioactive glass, casein
phosphopeptide-amorphous calcium phosphate, and
fluoride on initial enamel lesion (scanning electron
microscope analysis) -An in vitro study. J Conserv Dent.
2020;23(3):275-279.
- 46. Deswal R, Kukreja N, Chhabra S, Trivedi S, Sharma
A, Thakur A. Comparative Assessment of Enamel
Microhardness Using Various Remineralising Agents
on Artificially Demineralized Human Enamel. Cureus. 2022;14(10):e30281.
- 47. Haghgou EH, Haghgoo R, Roholahi MR, Ghorbani Z. Effect
of Casein Phosphopeptide-Amorphous Calcium Phosphate
and Three Calcium Phosphate on Enamel Microhardness. J
Contemp Dent Pract. 2017;18(7):583-586.
- 48. Panich M, Poolthong S. The effect of casein phosphopeptideamorphous
calcium phosphate and a cola soft drink on in
vitro enamel hardness. J Am Dent Assoc. 2009;140(4):455-60.
- 49. Ayad AH, AbdelHafez MI, AlGhandour RN, Mustafa
DS, Nour KA. Effect of different surface treatments on
the microhardness and colour change of artificial enamel
lesions. Aust Dent J. 2022;67(3):230-238.