Araştırma Makalesi
BibTex RIS Kaynak Göster

Impact of an Experimental Remineralizing Agent Incorporating Bioactive Glass on Enamel Hardness

Yıl 2024, Cilt: 3 Sayı: 2, 357 - 366, 30.08.2024
https://doi.org/10.58711/turkishjdentres.vi.1507367

Öz

Aim: The aim of this in vitro study was to investigate the effect of an experimental remineralization agent containing bioactive glass on the surface hardness of enamel.
Material and Method: A total of thirty samples were prepared for our investigation. After being embedded in acrylic, these samples were randomly divided into three groups and treated with three different methods: G1. Casein phosphopeptide-amorphous calcium phosphate [GC Tooth Mousse]; G2. Experimental remineralization agent containing bioactive glass; G3. Artificial saliva solution. The samples
underwent demineralization using 37% phosphoric acid for a duration of 30 seconds prior to the application of remineralization agents. Then the agents were administered twice daily for a period of 5 minutes. Following the removal of the agents, the samples were stored in artificial saliva until the subsequent procedure. The process was repeated daily for a duration of 10 days. The surface hardness of the samples was assessed on three separate times in total: initially, following demineralization, and after remineralization, using Vickers microhardness testing.
Results: After demineralization with phosphoric acid, the groups’ microhardness values significantly decreased (p<0.05). Microhardness increased significantly in the test groups after remineralization, but not in the control group (p>0.05). When evaluating both remineralization agents, no statistically
significant disparity was observed in the microhardness increases they induced on the enamel surface.
Conclusion: Bioactive glass significantly increased demineralized enamel surface microhardness, according to the study. However, the experimental remineralizastion agent’s physical and biological properties need further study. Additionally, demineralized enamel surfaces did not become
harder with artificial saliva solution alone.

Kaynakça

  • 1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Wein-traub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primers. 2017;3(1):17030.
  • 2. Arrica M, Carta G, Cocco F, et al. Does a social/behavioural gradient indental health exist among adults? A crosssectional study. J Int Med Res.2017;45:451–61.
  • 3. Krasse B. Die Quintessenz des Kariesrisikos. Berlin:Quintessenz-Verl., 1986.
  • 4. Laurisch L. Die Bestimmung des individuellen Kariesrisikos– Voraussetzung für eine Prophylaxe nach Maß.Oralprophylaxe 1988;10:126–133.
  • 5. J.A. Chapman, W.E. Roberts, G.J. Eckert, K.S. Kula, C. González-Cabezas, Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances, Am. J. Orthod. Dentofac. Orthop. (2010);138:188–194.
  • 6. K. Srivastava, T. Tikku, R. Khanna, K. Sachan, Risk factors and management of white spot lesions in orthodontics, J. Orthodontic Sci. (2013) 2: 43–49.
  • 7. Taştan E, Güler E, Bal FA Farklı Remineralizasyon Ajanlarının Lazer ve Ozon Tedavisi İle Kombine Kullanımının Başlangıç Çürüklerine Etkisinin İn-Vitro Olarak İncelenmesi. Turkiye Klinikleri J Dental Sci. 2021;27(2):269-79.
  • 8. Philip N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res. 2019;53(3):284-295.
  • 9. Retief DH, Bradley EL, Holbrook M, Switzer P. Enamel fluoride uptake, distribution and retention from topical fluoride agents. Caries Res. 1983;17(1):44-51.
  • 10. Chambers C, Stewart S, Su B, Sandy J, Ireland A, Prevention and treatment of demineralisation during fixed appliance therapy: a review of current methods and future applications, Br. Dent. J. 2013;215(10):505–11.
  • 11. Uysal S, Tulga Öz FT. Süt Dişi Başlangıç Mine Lezyonlarının Remineralizasyonunda Kullanılan Farklı Yapıdaki Diş Macunlarının Mikrosertlik Üzerine Etkisinin İn Vitro Koşullarda Değerlendirilmesi Selcuk Dent J, 2022; 9: 533-539.
  • 12. Akbarzade T, Farmany A, Farhadian M, Khamverdi Z, Dastgir R. Synthesis and characterization of nano bioactive glass for improving enamel remineralization ability of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). BMC Oral Health. 2022 24;22(1):525.
  • 13. Bhadoria N, Gunwal MK, Kukreja R, Maran S, Devendrappa SN, Singla S. An In Vitro Evaluation of Remineralization Potential of Functionalized Tricalcium Phosphate Paste and CPP-ACPF on Artificial White Spot Lesion in Primary and Permanent Enamel. Int J Clin Pediatr Dent. 2020 ;13(6):579-584.
  • 14. Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: A systematic review. J Dent. 2017;67:9-17.
  • 15. Körner P, Schleich JA, Wiedemeier DB, Attin T, Wegehaupt FJ. Effects of Additional Use of Bioactive Glasses or a Hydroxyapatite Toothpaste on Remineralization of Artificial Lesions in vitro. Caries Res. 2020;54(4):336-342.
  • 16. Tirapelli C, Panzeri H, Lara EH, Soares RG, Peitl O, Zanotto ED. The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a longterm clinical study. 2011;38(4):253–262.
  • 17. Grohe B, Mittler S. Advanced non-fluoride approaches to dental enamel remineralization: The next level in enamel repair management. Biomater Biosyst. 2021;4:100029.
  • 18. Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res 2019;53:284–95.
  • 19. Yavuz BS, Kargul B. Comparative evaluation of the spectraldomain optical coherence tomography and microhardness for remineralization of enamel caries lesions. Dent Mater J. 2021;40(5):1115-1121.
  • 20. Alafifi A, Yassen AA, Hassanein OE. Effectiveness of polyacrylic acid-bioactive glass air abrasion preconditioning with NovaMin remineralization on the microhardness of incipient enamel-like lesion. J Conserv Dent. 2019;22(6):548-553.
  • 21. Chuenarrom C, Benjakul P, Daosodsai P. Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin. Mat Res. 2009;12(4):473–76.
  • 22. Gutiérrez-Salazar P, Reyes-Gasga J. Microhardness and chemical composition of human tooth. Mat Res. 2003;6(3):367–73.
  • 23. Salinovic I, Schauperl Z, Marcius M, Miletic I. The Effects of Three Remineralizing Agents on the Microhardness and Chemical Composition of Demineralized Enamel. Materials. 2021;14(20):6051.
  • 24. Almqvist H, Lagerlöf F. Influence of constant fluoride levels in solution on root hard tissue de- and remineralization measured by 125I absorptiometry. Caries Res. 1993;27(2):100-5.
  • 25. Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralizationremineralization dynamics in teeth and bone. Int J Nanomed. 2016;11:4743–4763
  • 26. Featherstone JD, Duncan JF, Cutress TW. A mechanism for dental caries based on chemical processes and diffusion phenomena during in-vitro caries simulation on human tooth enamel. Arch Oral Biol. 1979;24(2):101–112.
  • 27. Faran Ali SM, Tanwir F: Oral microbial habitat a dynamic entity. J Oral Biol Craniofac Res. 2012; 2(3): 181–187.
  • 28. Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res. 2020;9:9:171.
  • 29. Ionta FQ, Mendonça FL, de Oliveira GC, de Alencar CR, Honório HM, Magalhães AC, Rios D. In vitro assessment of artificial saliva formulations on initial enamel erosion remineralization. J Dent. 2014;42(2):175-9.
  • 30. Amaechi BT, Higham SM. In vitro remineralisation of eroded enamel lesions by saliva. J Dent. 2001;29(5):371-6.
  • 31. Schlueter N, Amaechi BT, Bartlett D, Buzalaf MAR, Carvalho TS, Ganss C, Hara AT, Huysmans MDNJM, Lussi A, Moazzez R, Vieira AR, West NX, Wiegand A, Young A, Lippert F. Terminology of Erosive Tooth Wear: Consensus Report of a Workshop Organized by the ORCA and the Cariology Research Group of the IADR. Caries Res. 2020;54(1):2-6.
  • 32. Bhavsar B, Vijo M, Sharma P, Patnaik T, Alam MK, Patil S. Comparative assessment of enamel remineralisation on the surface microhardness of demineralized enamel - an in vitro study. PeerJ. 2022;10:e14098.
  • 33. Sorozini, Perez & Rocha Sorozini M, Perez CR, Rocha GM. Enamel sample preparation for AFM: influence on roughness and morphology. 2018;81(9):1071–1076.
  • 34. Molaasadolah F, Eskandarion S, Ehsani A, Sanginan M. In vitro evaluation of enamel microhardness after application of two types of fluoride varnish. 2017;11:ZC64–ZC66.
  • 35. Lata S, Varghese NO, Varughese JM. Remineralization potential of fluoride and amorphous calcium phosphatecasein phosphopeptide on enamel lesions: an in vitro comparative evaluation. 2010;13(1):42–46.
  • 36. Rose RK. Effects of anticariogenic casein phosphopeptide on calcium diffusion in streptococcal model dental plaque. 2000;45(7):569–575.
  • 37. Soares R, De Ataide IDN, Fernandes M, Lambor R. Assessment of enamel remineralisation after treatment with four different remineralising agents: a scanning electron microscopy (SEM) study. 2017;11(4):ZC136–ZC141.
  • 38. Caruana PC, Mulaify SA, Moazzez R, Bartlett D. The effect of casein and calcium containing paste on plaque pH following a subsequent carbohydrate challenge. J Dent 2009; 37: 522-6.
  • 39. Zhang Q, Zo J, Yang R, Zhou X. Remineralization effects of casein phosphopeptide‐amorphous calcium phosphate crème on artificial early enamel lesions of primary teeth. Int J Paediatr Dent 2011; 21(5), 374-381.
  • 40. Kanwal N, Brauer DS, Earl J, Wilson RM, Karpukhina N, Hill RG. In-vitro apatite formation capacity of a bioactive glass - containing toothpaste. J Dent. 2018;68:51-58.
  • 41. Iijima M, Hashimoto M, Kohda N, Nakagaki S, Muguruma T, Endo K, Mizoguchi I. Crystal growth on bioactive glass sputter-coated alumina in artificial saliva. Dent Mater J. 2013;32(5):775-80.
  • 42. Roy S, Basu B. In vitro dissolution behavior of SiO2-MgOAl2O 3-K2O-B2O3-F glass-ceramic system. J Mater Sci Mater Med. 2008;19(9):3123-33.
  • 43. Mitchell, Musanje & Ferracane Mitchell JC, Musanje L, Ferracane JL. Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dental Materials. 2011;27(4):386–393.
  • 44. Srivastava, Choudhary, E. Assessment of Enamel Remineralising Capability of Three Different Remineralising Agents Using Vicker’s Surface Microhardness Test.Int. J. Pharm. Bio. Sci. 2019;10:151– 157.
  • 45. Geeta RD, Vallabhaneni S, Fatima K. Comparative evaluation of remineralization potential of nanohydroxyapatite crystals, bioactive glass, casein phosphopeptide-amorphous calcium phosphate, and fluoride on initial enamel lesion (scanning electron microscope analysis) -An in vitro study. J Conserv Dent. 2020;23(3):275-279.
  • 46. Deswal R, Kukreja N, Chhabra S, Trivedi S, Sharma A, Thakur A. Comparative Assessment of Enamel Microhardness Using Various Remineralising Agents on Artificially Demineralized Human Enamel. Cureus. 2022;14(10):e30281.
  • 47. Haghgou EH, Haghgoo R, Roholahi MR, Ghorbani Z. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness. J Contemp Dent Pract. 2017;18(7):583-586.
  • 48. Panich M, Poolthong S. The effect of casein phosphopeptideamorphous calcium phosphate and a cola soft drink on in vitro enamel hardness. J Am Dent Assoc. 2009;140(4):455-60.
  • 49. Ayad AH, AbdelHafez MI, AlGhandour RN, Mustafa DS, Nour KA. Effect of different surface treatments on the microhardness and colour change of artificial enamel lesions. Aust Dent J. 2022;67(3):230-238.

Biyoaktif Cam İçeren Deneysel Bir Remineralizasyon Ajanının Minenin Yüzey Sertliğine Etkisi

Yıl 2024, Cilt: 3 Sayı: 2, 357 - 366, 30.08.2024
https://doi.org/10.58711/turkishjdentres.vi.1507367

Öz

Amaç: Bu in vitro çalışmanın amacı, biyoaktif cam içeren deneysel bir remineralizasyon ajanının minenin yüzey sertliği üzerindeki etkisini araştırmaktır.
Gereç ve Yöntem: Onbeş adet insan 3. molar dişinden toplam otuz adet mine kesiti hazırlandı. Örnekler akrilik içine gömüldükten sonra rastgele üç gruba ayrıldı: G1. Kazein fosfopeptid-amorf kalsiyum fosfat [GC Tooth Mousse]; G2. Biyoaktif cam içeren deneysel remineralizasyon ajanı; G3. Yapay tükürük çözeltisi. Örnekler, remineralizasyon ajanlarının uygulanmasından önce 30 saniye süreyle %37’lik fosforik asit kullanılarak demineralizasyona tabi tutuldu. Daha sonra örneklerin yüzeylerine 5 dakikalık bir süre boyunca günde iki kez olmak üzere remineralizasyon ajanları uygulandı. Ajanların pamuk peletler ile temizlenmesinin ardından, örnekler bir sonraki tekrara kadar yapay bir tükürük çözeltisinde saklandı.
İşlem 10 gün boyunca günlük olarak tekrarlandı. Örneklerin yüzey sertliği Vickers mikrosertlik testi kullanılarak başlangıçta, demineralizasyonu takiben ve remineralizasyondan sonra olmak üzere üç ayrı zamanda değerlendirildi.
Bulgular: Fosforik asitle demineralizasyon sonrasında grupların mikrosertlik değerlerinde anlamlı bir azalma tespit edildi (p<0.05). Remineralizasyon ajanları test gruplarında mikrosertliği arttırırken kontrol grubunda bir artış görülmedi (p>0.05). Her iki remineralizasyon ajanı karşılaştırıldığında, mine yüzeyinde meydana getirdikleri mikrosertlik artışları arasında istatistiksel olarak anlamlı bir fark saptanmadı.
Sonuç: Biyoaktif cam içeren deneysel ajanın demineralize mine yüzeylerinin mikrosertlik değerlerini anlamlı şekilde artırdığı tespit edildi. Ancak, deneysel ajanın fiziksel ve biyolojik özelliklerinin daha ileri araştırmalarla incelenmesi gerekmektedir. Ayrıca, yapay tükürük solüsyonunun tek başına demineralize mine yüzeylerinin sertliğini artırmadığı belirlenmiştir.

Kaynakça

  • 1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Wein-traub JA, Ramos-Gomez F, et al. Dental caries. Nat Rev Dis Primers. 2017;3(1):17030.
  • 2. Arrica M, Carta G, Cocco F, et al. Does a social/behavioural gradient indental health exist among adults? A crosssectional study. J Int Med Res.2017;45:451–61.
  • 3. Krasse B. Die Quintessenz des Kariesrisikos. Berlin:Quintessenz-Verl., 1986.
  • 4. Laurisch L. Die Bestimmung des individuellen Kariesrisikos– Voraussetzung für eine Prophylaxe nach Maß.Oralprophylaxe 1988;10:126–133.
  • 5. J.A. Chapman, W.E. Roberts, G.J. Eckert, K.S. Kula, C. González-Cabezas, Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances, Am. J. Orthod. Dentofac. Orthop. (2010);138:188–194.
  • 6. K. Srivastava, T. Tikku, R. Khanna, K. Sachan, Risk factors and management of white spot lesions in orthodontics, J. Orthodontic Sci. (2013) 2: 43–49.
  • 7. Taştan E, Güler E, Bal FA Farklı Remineralizasyon Ajanlarının Lazer ve Ozon Tedavisi İle Kombine Kullanımının Başlangıç Çürüklerine Etkisinin İn-Vitro Olarak İncelenmesi. Turkiye Klinikleri J Dental Sci. 2021;27(2):269-79.
  • 8. Philip N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res. 2019;53(3):284-295.
  • 9. Retief DH, Bradley EL, Holbrook M, Switzer P. Enamel fluoride uptake, distribution and retention from topical fluoride agents. Caries Res. 1983;17(1):44-51.
  • 10. Chambers C, Stewart S, Su B, Sandy J, Ireland A, Prevention and treatment of demineralisation during fixed appliance therapy: a review of current methods and future applications, Br. Dent. J. 2013;215(10):505–11.
  • 11. Uysal S, Tulga Öz FT. Süt Dişi Başlangıç Mine Lezyonlarının Remineralizasyonunda Kullanılan Farklı Yapıdaki Diş Macunlarının Mikrosertlik Üzerine Etkisinin İn Vitro Koşullarda Değerlendirilmesi Selcuk Dent J, 2022; 9: 533-539.
  • 12. Akbarzade T, Farmany A, Farhadian M, Khamverdi Z, Dastgir R. Synthesis and characterization of nano bioactive glass for improving enamel remineralization ability of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). BMC Oral Health. 2022 24;22(1):525.
  • 13. Bhadoria N, Gunwal MK, Kukreja R, Maran S, Devendrappa SN, Singla S. An In Vitro Evaluation of Remineralization Potential of Functionalized Tricalcium Phosphate Paste and CPP-ACPF on Artificial White Spot Lesion in Primary and Permanent Enamel. Int J Clin Pediatr Dent. 2020 ;13(6):579-584.
  • 14. Taha AA, Patel MP, Hill RG, Fleming PS. The effect of bioactive glasses on enamel remineralization: A systematic review. J Dent. 2017;67:9-17.
  • 15. Körner P, Schleich JA, Wiedemeier DB, Attin T, Wegehaupt FJ. Effects of Additional Use of Bioactive Glasses or a Hydroxyapatite Toothpaste on Remineralization of Artificial Lesions in vitro. Caries Res. 2020;54(4):336-342.
  • 16. Tirapelli C, Panzeri H, Lara EH, Soares RG, Peitl O, Zanotto ED. The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: a longterm clinical study. 2011;38(4):253–262.
  • 17. Grohe B, Mittler S. Advanced non-fluoride approaches to dental enamel remineralization: The next level in enamel repair management. Biomater Biosyst. 2021;4:100029.
  • 18. Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res 2019;53:284–95.
  • 19. Yavuz BS, Kargul B. Comparative evaluation of the spectraldomain optical coherence tomography and microhardness for remineralization of enamel caries lesions. Dent Mater J. 2021;40(5):1115-1121.
  • 20. Alafifi A, Yassen AA, Hassanein OE. Effectiveness of polyacrylic acid-bioactive glass air abrasion preconditioning with NovaMin remineralization on the microhardness of incipient enamel-like lesion. J Conserv Dent. 2019;22(6):548-553.
  • 21. Chuenarrom C, Benjakul P, Daosodsai P. Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin. Mat Res. 2009;12(4):473–76.
  • 22. Gutiérrez-Salazar P, Reyes-Gasga J. Microhardness and chemical composition of human tooth. Mat Res. 2003;6(3):367–73.
  • 23. Salinovic I, Schauperl Z, Marcius M, Miletic I. The Effects of Three Remineralizing Agents on the Microhardness and Chemical Composition of Demineralized Enamel. Materials. 2021;14(20):6051.
  • 24. Almqvist H, Lagerlöf F. Influence of constant fluoride levels in solution on root hard tissue de- and remineralization measured by 125I absorptiometry. Caries Res. 1993;27(2):100-5.
  • 25. Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralizationremineralization dynamics in teeth and bone. Int J Nanomed. 2016;11:4743–4763
  • 26. Featherstone JD, Duncan JF, Cutress TW. A mechanism for dental caries based on chemical processes and diffusion phenomena during in-vitro caries simulation on human tooth enamel. Arch Oral Biol. 1979;24(2):101–112.
  • 27. Faran Ali SM, Tanwir F: Oral microbial habitat a dynamic entity. J Oral Biol Craniofac Res. 2012; 2(3): 181–187.
  • 28. Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Res. 2020;9:9:171.
  • 29. Ionta FQ, Mendonça FL, de Oliveira GC, de Alencar CR, Honório HM, Magalhães AC, Rios D. In vitro assessment of artificial saliva formulations on initial enamel erosion remineralization. J Dent. 2014;42(2):175-9.
  • 30. Amaechi BT, Higham SM. In vitro remineralisation of eroded enamel lesions by saliva. J Dent. 2001;29(5):371-6.
  • 31. Schlueter N, Amaechi BT, Bartlett D, Buzalaf MAR, Carvalho TS, Ganss C, Hara AT, Huysmans MDNJM, Lussi A, Moazzez R, Vieira AR, West NX, Wiegand A, Young A, Lippert F. Terminology of Erosive Tooth Wear: Consensus Report of a Workshop Organized by the ORCA and the Cariology Research Group of the IADR. Caries Res. 2020;54(1):2-6.
  • 32. Bhavsar B, Vijo M, Sharma P, Patnaik T, Alam MK, Patil S. Comparative assessment of enamel remineralisation on the surface microhardness of demineralized enamel - an in vitro study. PeerJ. 2022;10:e14098.
  • 33. Sorozini, Perez & Rocha Sorozini M, Perez CR, Rocha GM. Enamel sample preparation for AFM: influence on roughness and morphology. 2018;81(9):1071–1076.
  • 34. Molaasadolah F, Eskandarion S, Ehsani A, Sanginan M. In vitro evaluation of enamel microhardness after application of two types of fluoride varnish. 2017;11:ZC64–ZC66.
  • 35. Lata S, Varghese NO, Varughese JM. Remineralization potential of fluoride and amorphous calcium phosphatecasein phosphopeptide on enamel lesions: an in vitro comparative evaluation. 2010;13(1):42–46.
  • 36. Rose RK. Effects of anticariogenic casein phosphopeptide on calcium diffusion in streptococcal model dental plaque. 2000;45(7):569–575.
  • 37. Soares R, De Ataide IDN, Fernandes M, Lambor R. Assessment of enamel remineralisation after treatment with four different remineralising agents: a scanning electron microscopy (SEM) study. 2017;11(4):ZC136–ZC141.
  • 38. Caruana PC, Mulaify SA, Moazzez R, Bartlett D. The effect of casein and calcium containing paste on plaque pH following a subsequent carbohydrate challenge. J Dent 2009; 37: 522-6.
  • 39. Zhang Q, Zo J, Yang R, Zhou X. Remineralization effects of casein phosphopeptide‐amorphous calcium phosphate crème on artificial early enamel lesions of primary teeth. Int J Paediatr Dent 2011; 21(5), 374-381.
  • 40. Kanwal N, Brauer DS, Earl J, Wilson RM, Karpukhina N, Hill RG. In-vitro apatite formation capacity of a bioactive glass - containing toothpaste. J Dent. 2018;68:51-58.
  • 41. Iijima M, Hashimoto M, Kohda N, Nakagaki S, Muguruma T, Endo K, Mizoguchi I. Crystal growth on bioactive glass sputter-coated alumina in artificial saliva. Dent Mater J. 2013;32(5):775-80.
  • 42. Roy S, Basu B. In vitro dissolution behavior of SiO2-MgOAl2O 3-K2O-B2O3-F glass-ceramic system. J Mater Sci Mater Med. 2008;19(9):3123-33.
  • 43. Mitchell, Musanje & Ferracane Mitchell JC, Musanje L, Ferracane JL. Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dental Materials. 2011;27(4):386–393.
  • 44. Srivastava, Choudhary, E. Assessment of Enamel Remineralising Capability of Three Different Remineralising Agents Using Vicker’s Surface Microhardness Test.Int. J. Pharm. Bio. Sci. 2019;10:151– 157.
  • 45. Geeta RD, Vallabhaneni S, Fatima K. Comparative evaluation of remineralization potential of nanohydroxyapatite crystals, bioactive glass, casein phosphopeptide-amorphous calcium phosphate, and fluoride on initial enamel lesion (scanning electron microscope analysis) -An in vitro study. J Conserv Dent. 2020;23(3):275-279.
  • 46. Deswal R, Kukreja N, Chhabra S, Trivedi S, Sharma A, Thakur A. Comparative Assessment of Enamel Microhardness Using Various Remineralising Agents on Artificially Demineralized Human Enamel. Cureus. 2022;14(10):e30281.
  • 47. Haghgou EH, Haghgoo R, Roholahi MR, Ghorbani Z. Effect of Casein Phosphopeptide-Amorphous Calcium Phosphate and Three Calcium Phosphate on Enamel Microhardness. J Contemp Dent Pract. 2017;18(7):583-586.
  • 48. Panich M, Poolthong S. The effect of casein phosphopeptideamorphous calcium phosphate and a cola soft drink on in vitro enamel hardness. J Am Dent Assoc. 2009;140(4):455-60.
  • 49. Ayad AH, AbdelHafez MI, AlGhandour RN, Mustafa DS, Nour KA. Effect of different surface treatments on the microhardness and colour change of artificial enamel lesions. Aust Dent J. 2022;67(3):230-238.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Restoratif Diş Tedavisi
Bölüm Araştırma Makaleleri
Yazarlar

İdil Gönüllü 0009-0001-7463-0895

Hande Kemaloglu 0000-0003-0463-373X

Cem Peşkersoy 0000-0003-2502-2698

Houman Golchin 0009-0002-2986-8965

Murat Turkun 0000-0001-7405-1677

Yayımlanma Tarihi 30 Ağustos 2024
Gönderilme Tarihi 1 Temmuz 2024
Kabul Tarihi 31 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 2

Kaynak Göster

Vancouver Gönüllü İ, Kemaloglu H, Peşkersoy C, Golchin H, Turkun M. Biyoaktif Cam İçeren Deneysel Bir Remineralizasyon Ajanının Minenin Yüzey Sertliğine Etkisi. J Turkish Dent Res. 2024;3(2):357-66.

Türk Diş Hekimliği Araştırma Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.

Dergimize Diş Hekimliği alanından yayın kabulü yapılmaktadır. Diğer alanlardan gönderilen yayınlar değerlendirmeye alınmamaktadır.