The effects of mechanical activation on corrosion resistance of cordierite ceramics
Yıl 2023,
, 83 - 88, 29.12.2023
Can Serkan Keskin
,
Ceren Ayna Çakır
,
Hüseyin Altundağ
,
Nil Toplan
,
Hüseyin Özkan Toplan
Öz
The corrosion degrees of produced non-activated and activated cordierite-based ceramics were investigated in hydrochloric and sulfuric acid solutions. The composition of talc, alumina, and kaolinite powders was mechanically activated in a planetary mill. The concentrations of aluminum, magnesium, silicon, calcium, and potassium leached to the acid solutions from non-activated and activated cordierites were measured using ICP-OES. The amorphization of the structures was examined by XRD analysis. As a result, it has been determined that activated cordierite-based ceramics are more durable, and sulfuric acid solution causes more corrosion than hydrochloric acid.
Destekleyen Kurum
Sakarya Üniversitesi
Kaynakça
- C. N. Obradovic, N. Dordevic, S. Filipovic, N. Nikolic, D. Kosanovic, M. Mitric, S. Markovic, V. Pavlovic, Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive, Powder Technol, 218, 2012, 157–161.
https://doi.org/10.1016/j.powtec.2011.12.012.
- J. Liao, G. Qing, B. Zhao, Phase equilibria studies in the CaO-MgO-Al2O3-SiO2 system with Al2O3/SiO2 weight ratio of 0.4, Metals, 13(224), 2023, 2-26. https://doi.org/10.3390/met13020224.
- W. N. Obradović, V. Pavlović, M. Kachlik, K. Maca, D. Olćan, A. Đorđević, A. Thantshapanyan, B. Vlahović, V. Pavlović, Processing and properties of dense cordierite ceramics obtained through solid-state reaction and pressure-less sintering, Adv Appl Ceram, 118(5), 2019, 241–248. https://doi.org/10.1080/17436753.2018.1548150.
- S. Yürüyen, N. Toplan, K. Yıldız, H. Ö. Toplan, The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system, J Therm Anal Calorim, 125(2), 2016, 803–808. https://doi.org/10.1007/s10973-016-5277-1.
- C. Başaran, N. Canikoğlu, H. Ö. Toplan, N. Toplan, The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste, J Therm Anal Calorim, 125(2), 2016, 695–701.
https://doi.org/10.1007/s10973-015-5139-2.
- A. Peles, N. Đorđevic, N. Obradovic, N. Tadic, V. B. Pavlovic, Influence of prolonged sintering time on density and electrical properties of isothermally sintered cordierite-based ceramics, Sci Sinter, 45(2), 2013, 157-164. https://doi.org/10.2298/SOS1302157P.
- Y. Kobayashi, K. Sumi, E. Kato, Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives, Ceram Int, 26(7), 2000, 739–43. https://doi.org/10.1016/S0272-8842(00)00013-4.
- P. Y. Azimov, S. A. Bushmin, Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: thermodynamic modeling at 400–800 °C and 1–5 kbar, Geochem. Int+, 45(1), 2007, 1210–1234. https://doi.org/10.1134/S0016702907120038.
- A. Harrati, Y. Arkame, A. Manni, A. El Haddar, B. Achiou, A. El Bouari, I. E. A. El Hassani, A. Sdiri, C. Sadik, Cordierite-based refractory ceramics from natural halloysite and peridotite: Insights on technological properties, J Indian Chem Soc, 99(6), 2022, 100496. https://doi.org/10.1016/j.jics.2022.100496.
- J. Kang, J. Wang, X. Zhou, J. Yuan, Y. Hou, S. Qian, S. Li, Y. Yue, Effects of alkali metal oxides on crystallization behavior and acid corrosion resistance of cordierite-based glass-ceramics, J Non-Cryst Solids, 481, 2017, 184-190. https://doi.org/10.1016/j.jnoncrysol.2017.10.048.
- S. Baitalik, N. Kaya, Processing and properties of cordierite-silica bonded porous SiC ceramics, Ceram Int, 43(17), 2018, 14683–14692. https://doi.org/10.1016/j.ceramint.2017.07.196.
- S. Koç¸ N. Toplan, K. Yıldız, H. O. Toplan, Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite, J Therm Anal Calorim, 103, 2011, 791–796. https://doi.org/10.1007/s10973-010-1154-5.
- J. Ding, J. Wang, H. Yang, Z. Liu, C. Yu, X. Li, C. Deng, H. Zhu, Improvement of mechanical properties of composites with surface modified B4C for precision machining, Materials, 16(882), 2023, 2-10.
https://doi.org/10.3390/ma16020882.
- N. Obradović, S. Filipović, N. Đorđević, D. Kosanović, S. Marković, V. Pavlović, D. Olćan, A. Djordjević, M. Kachlik, K.l Maca, Effects of mechanical activation and two-step sintering on the structure and electrical properties of cordierite-based ceramics, Ceram Int, 42, 2016, 13909–13918. https://doi.org/10.1016/j.ceramint.2016.05.201.
- S. K. Nath, S. Kumar, R. Kumar, Effect of mechanical activation on cordierite synthesis through solid-state sintering method, B Mater Sci, 37(6), 2014, 1221–1226. https://doi.org/10.1007/s12034-014-0065-7.
- N. G. Đorđević, P. B. Jovanić, Influence of mechanical activation on electrical properties of cordierite ceramics, Sci Sinter, 40, 2008, 47-53. https://doi.org/10.2298/SOS0801047D.
- E. Yalamac¸ S. Akkurt, Additive and intensive grinding effects on the synthesis of cordierite, Ceram Int, 32, 2006, 825–832. https://doi.org/10.1016/j.ceramint.2005.06.006.
- J. Wu, C. Hu, C. Ping, X. Xu, W. Xiang, Preparation and corrosion resistance of cordierite–spodumene composite ceramics using zircon as a modifying agent, Ceram Int, 44, 2018, 19590–19596.
https://doi.org/10.1016/j.ceramint.2018.07.205.
- B. Çıtak, D. Kırsever, A. Ayday, H. Boussebha, A. Ş. Demirkıran, The corrosion kinetics of cordierite-based ZrO2 composites obtained from natural zeolite in dilute HCl acid solution, J Compos Mater, 55(20), 2021, 2751–2763. https://doi.org/10.1177/0021998321996751.
- P. Balaz, Mechanochemistry In Nanoscience And Minerals Engineering (1. edition), 2008, Germany, Springer.
- S. Vyazovkin, Isoconversional Kinetics, Handbook Of Thermal Analysis And Calorimetry, Editors: M.E. Brown, P.K. Gallagher, 2008, Holland, Elsevier.
- J. Wu, C. Lu, X. Xu, D. Wang, Y. Zhang, Y. Zhou, Preparation and characterization of cordierite ceramic from coal series kaolin for electronic application, J Aust Ceram Soc, 55, 2019, 943–952.
https://doi.org/10.1007/s41779-019-00306-w.
- D. Tromans, J. A. Meech, Enhanced dissolution of minerals: microtopography and mechanical activation, Miner Eng, 12(6), 1999, 609–625. https://doi.org/10.1016/S0892-6875(99)00047-3.
- D. Tromans, J. A. Meech, Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation, Miner Eng, 14(11), 2001, 1359–1377. https://doi.org/10.1016/S0892-6875(01)00151-0.
- E. Elmas, K. Yıldız, N. Toplan, H. Ö. Toplan, Effect of mechanical activation on mullite formation in an alumına-quartz ceramics system, Mater Technol, 47(4), 2013, 413-416.
https://doi.org/10.1007/s10973-011-1757-5.
- L. Curkovic, M. F. Jelaca, Dissolution of alumina ceramics in HCl aqueous solution, Ceram Int, 35(5), 2009, 2041–2045. https://doi.org/10.1016/j.ceramint.2008.11.007.
Yıl 2023,
, 83 - 88, 29.12.2023
Can Serkan Keskin
,
Ceren Ayna Çakır
,
Hüseyin Altundağ
,
Nil Toplan
,
Hüseyin Özkan Toplan
Kaynakça
- C. N. Obradovic, N. Dordevic, S. Filipovic, N. Nikolic, D. Kosanovic, M. Mitric, S. Markovic, V. Pavlovic, Influence of mechanochemical activation on the sintering of cordierite ceramics in the presence of Bi2O3 as a functional additive, Powder Technol, 218, 2012, 157–161.
https://doi.org/10.1016/j.powtec.2011.12.012.
- J. Liao, G. Qing, B. Zhao, Phase equilibria studies in the CaO-MgO-Al2O3-SiO2 system with Al2O3/SiO2 weight ratio of 0.4, Metals, 13(224), 2023, 2-26. https://doi.org/10.3390/met13020224.
- W. N. Obradović, V. Pavlović, M. Kachlik, K. Maca, D. Olćan, A. Đorđević, A. Thantshapanyan, B. Vlahović, V. Pavlović, Processing and properties of dense cordierite ceramics obtained through solid-state reaction and pressure-less sintering, Adv Appl Ceram, 118(5), 2019, 241–248. https://doi.org/10.1080/17436753.2018.1548150.
- S. Yürüyen, N. Toplan, K. Yıldız, H. Ö. Toplan, The non-isothermal kinetics of cordierite formation in mechanically activated talc–kaolinite–alumina ceramics system, J Therm Anal Calorim, 125(2), 2016, 803–808. https://doi.org/10.1007/s10973-016-5277-1.
- C. Başaran, N. Canikoğlu, H. Ö. Toplan, N. Toplan, The crystallization kinetics of the MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste, J Therm Anal Calorim, 125(2), 2016, 695–701.
https://doi.org/10.1007/s10973-015-5139-2.
- A. Peles, N. Đorđevic, N. Obradovic, N. Tadic, V. B. Pavlovic, Influence of prolonged sintering time on density and electrical properties of isothermally sintered cordierite-based ceramics, Sci Sinter, 45(2), 2013, 157-164. https://doi.org/10.2298/SOS1302157P.
- Y. Kobayashi, K. Sumi, E. Kato, Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives, Ceram Int, 26(7), 2000, 739–43. https://doi.org/10.1016/S0272-8842(00)00013-4.
- P. Y. Azimov, S. A. Bushmin, Solubility of minerals of metamorphic and metasomatic rocks in hydrothermal solutions of varying acidity: thermodynamic modeling at 400–800 °C and 1–5 kbar, Geochem. Int+, 45(1), 2007, 1210–1234. https://doi.org/10.1134/S0016702907120038.
- A. Harrati, Y. Arkame, A. Manni, A. El Haddar, B. Achiou, A. El Bouari, I. E. A. El Hassani, A. Sdiri, C. Sadik, Cordierite-based refractory ceramics from natural halloysite and peridotite: Insights on technological properties, J Indian Chem Soc, 99(6), 2022, 100496. https://doi.org/10.1016/j.jics.2022.100496.
- J. Kang, J. Wang, X. Zhou, J. Yuan, Y. Hou, S. Qian, S. Li, Y. Yue, Effects of alkali metal oxides on crystallization behavior and acid corrosion resistance of cordierite-based glass-ceramics, J Non-Cryst Solids, 481, 2017, 184-190. https://doi.org/10.1016/j.jnoncrysol.2017.10.048.
- S. Baitalik, N. Kaya, Processing and properties of cordierite-silica bonded porous SiC ceramics, Ceram Int, 43(17), 2018, 14683–14692. https://doi.org/10.1016/j.ceramint.2017.07.196.
- S. Koç¸ N. Toplan, K. Yıldız, H. O. Toplan, Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite, J Therm Anal Calorim, 103, 2011, 791–796. https://doi.org/10.1007/s10973-010-1154-5.
- J. Ding, J. Wang, H. Yang, Z. Liu, C. Yu, X. Li, C. Deng, H. Zhu, Improvement of mechanical properties of composites with surface modified B4C for precision machining, Materials, 16(882), 2023, 2-10.
https://doi.org/10.3390/ma16020882.
- N. Obradović, S. Filipović, N. Đorđević, D. Kosanović, S. Marković, V. Pavlović, D. Olćan, A. Djordjević, M. Kachlik, K.l Maca, Effects of mechanical activation and two-step sintering on the structure and electrical properties of cordierite-based ceramics, Ceram Int, 42, 2016, 13909–13918. https://doi.org/10.1016/j.ceramint.2016.05.201.
- S. K. Nath, S. Kumar, R. Kumar, Effect of mechanical activation on cordierite synthesis through solid-state sintering method, B Mater Sci, 37(6), 2014, 1221–1226. https://doi.org/10.1007/s12034-014-0065-7.
- N. G. Đorđević, P. B. Jovanić, Influence of mechanical activation on electrical properties of cordierite ceramics, Sci Sinter, 40, 2008, 47-53. https://doi.org/10.2298/SOS0801047D.
- E. Yalamac¸ S. Akkurt, Additive and intensive grinding effects on the synthesis of cordierite, Ceram Int, 32, 2006, 825–832. https://doi.org/10.1016/j.ceramint.2005.06.006.
- J. Wu, C. Hu, C. Ping, X. Xu, W. Xiang, Preparation and corrosion resistance of cordierite–spodumene composite ceramics using zircon as a modifying agent, Ceram Int, 44, 2018, 19590–19596.
https://doi.org/10.1016/j.ceramint.2018.07.205.
- B. Çıtak, D. Kırsever, A. Ayday, H. Boussebha, A. Ş. Demirkıran, The corrosion kinetics of cordierite-based ZrO2 composites obtained from natural zeolite in dilute HCl acid solution, J Compos Mater, 55(20), 2021, 2751–2763. https://doi.org/10.1177/0021998321996751.
- P. Balaz, Mechanochemistry In Nanoscience And Minerals Engineering (1. edition), 2008, Germany, Springer.
- S. Vyazovkin, Isoconversional Kinetics, Handbook Of Thermal Analysis And Calorimetry, Editors: M.E. Brown, P.K. Gallagher, 2008, Holland, Elsevier.
- J. Wu, C. Lu, X. Xu, D. Wang, Y. Zhang, Y. Zhou, Preparation and characterization of cordierite ceramic from coal series kaolin for electronic application, J Aust Ceram Soc, 55, 2019, 943–952.
https://doi.org/10.1007/s41779-019-00306-w.
- D. Tromans, J. A. Meech, Enhanced dissolution of minerals: microtopography and mechanical activation, Miner Eng, 12(6), 1999, 609–625. https://doi.org/10.1016/S0892-6875(99)00047-3.
- D. Tromans, J. A. Meech, Enhanced dissolution of minerals: stored energy, amorphism and mechanical activation, Miner Eng, 14(11), 2001, 1359–1377. https://doi.org/10.1016/S0892-6875(01)00151-0.
- E. Elmas, K. Yıldız, N. Toplan, H. Ö. Toplan, Effect of mechanical activation on mullite formation in an alumına-quartz ceramics system, Mater Technol, 47(4), 2013, 413-416.
https://doi.org/10.1007/s10973-011-1757-5.
- L. Curkovic, M. F. Jelaca, Dissolution of alumina ceramics in HCl aqueous solution, Ceram Int, 35(5), 2009, 2041–2045. https://doi.org/10.1016/j.ceramint.2008.11.007.