Araştırma Makalesi
BibTex RIS Kaynak Göster

Fındık kabuğu kömüründen elde edilen yeni mezo gözenekli aktif nanokarbonun eldesi ve karakterizastonu

Yıl 2025, , 55 - 60, 31.01.2025
https://doi.org/10.51435/turkjac.1606566

Öz

Son yıllardaki bilimsel çalışmalar düzenli gözenekli karbon nano malzemeler, düzenli gözenekli yapıları ve oldukça büyük yüzey alanına sahip olmaları nedeniyle önemli uygulama alanları bulmaktadır. Gözenekli karbon materyallerin düşük yoğunluklu olmaları, kimyasal olarak kararlı olmaları, güçlü mekanik dayanımları ve çok iyi elektrik iletkenlikleri onların özel ve ileri teknolojik alanlarda kullanılmalarını sağlar. Özellikle elektrokimyada elektrod olarak, hidrojen depolama, heterojen kataliz, gaz adsorbsiyonu ve ayırma proseslerinde adsorban olarak geniş kullanım alanları bulmaktadır.
Düzenli gözenekli nano materyaller gözenek yarıçaplarına göre; mikrogözenekli (gözenek boyutu <2 nm), mezogözenekli (gözenek boyutu >2 nm <50 nm) ve makrogözenekli (gözenek boyutu <50 nm) olarak sınıflandırılırlar. Aktif karbon ve karbon moleküler elek gibi gibi geleneksel gözenekli karbon materyaller kömür, odun, meyve kabuğu, meyve çekirdeği veya organik polimerlerin önce piroliz edilmeleri ardından fiziksel ya da kimyasal aktivasyonuyla elde edilirler.
Çalışmamızda; karbon kaynağı olarak “öğütülmüş fındıkkabuğu kömürü”, şablon olarak bir mezogözenekli silika nanopartikül (MSN) olan “SBA-15” ile birlikte karıştırıldı, 900oClik fırında azot atmosferi altında tekrar karbonize edilerek düzenli mezogözenekli karbon nano materyali elde edildi. Elde edilen düzenli gözenekli karbon nano materyalin morfolojisi (yüzey özellikleri) ve bazı fizikokimyasal özellikleri; termal gravimetri (TG/DTA), N2 adsorbsiyon-desorbsiyon (Azot adsorbsiyon-desorbsiyon) izotermi (BET), X-ray powder diffraction, SEM/TEM ve elementel analiz yöntemleriyle aydınlatılmıştır.

Kaynakça

  • G. Newcombe, D. Dixon, Interface Science in Drinking Water Treatment (1. baskı), 2006, NSW Australia: Elsevier.
  • K. Sezer, Investigation of the Usability of Activated Carbon Produced from Sugar Beet Pulp for the Adsorption Of 2,4-D and Metribuzin Pesticides in Wastewaters, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, 2010.
  • M. Yalçın, A.I. Arol, Production of Activated Carbon from Domestic Sources for Gold Metallurgy (özet), Türkiye XIII Madencilik Kongresi, 1993, Türkiye, 413‐426.
  • E.Y. Küçükgül, Determination of Commercial Activated Carbon Production and Properties, J Eng Fac Dokuz Eylul Univ, 6, 2004, 41-56.
  • Z. Sayın, C. Kumaş, B. Ergül, Activated Carbon Production From Hazelnut Shells, Afyon Kocatepe Univ J Sci Eng, 16, 2016, 025805(409‐419).
  • J.S. Beck, D.C. Calabro, S.B. McCullen, B.P. Pelrine, K.D. Schmitt, J.C. Vartuli, Method for Functionalizing Synthetic Mesoporous Crystalline Material, 2018, U.S. Patent 2.069.722.
  • J. Chen, N. Xia, T. Zhou, S. Tan, F. Jiang, D. Yuan, Mesoporous carbon spheres: Synthesis, characterization and supercapacitance, Int J Electrochem Sci, 4, 2009, 1063-1073.
  • C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 1992, 710-712.
  • A. Monnier, E. Schüth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firoouzi, M. Janicke, B.F. Chmelka, Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science, 261, 1993, 1299-1303.
  • M.A. Karakassides, A. Bourlinos, D. Petridis, L. Coche-Guerente, P. Labbe, Synthesis and characterization of copper containing mesoporous silicas, J Mater Chem, 10, 2000, 403–408.
  • J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J Am Chem Soc, 114, 1992, 10834–10843.
  • D.J. Zhao, Q.L. Sun, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15, Chem Mater, 12, 2000, 275–279.
  • M. Colilla, E. Balas, M. Manzano, M. Vallet-Regí, Novel method to enlarge the surface area of SBA-15, Chem Mater, 19, 2007, 3099–3101.
  • J. Puputti, H. Jin, J. Rosenholm, H. Jiang, M. Lindén, The use of an impure inorganic precursor for the synthesis of highly siliceous mesoporous materials under acidic conditions, Microporous Mesoporous Mater, 126, 2009, 272–275.
  • D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J Am Chem Soc, 120, 1998, 6024-6036.
  • K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl Chem, 57, 1985, 603–619.
  • Z.A. AlOthman, A Review: Fundamental Aspects of Silicate Mesoporous Materials, Materials, 5, 2012, 2874-2902.
  • J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv Mater, 18, 2006, 2073-2094.
  • R.K. Dash, G. Yushin, Y. Gogotsi, Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide, Microporous Mesoporous Mater, 86, 2005, 50–57.
  • A. Eftekhari, Z. Fan, Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion, Mater Chem Front, 1, 2017, 1001–1027.
  • Y. Şentürk, Synthesis of Mesoporous Nano Particule, Investigation of Adsorbtion of Glyphosate Derivative Herbicides on This Materials, Yüksek Lisans Tezi, Giresun Üniversitesi, Fen Bilimleri Enstitüsü, 2017.
  • Z. Hu, M.P. Srinivasan, Mesoporous high-surface area activated carbon, Microporous Mesoporous Mater, 43, 2001, 267–275.
  • S. Kubo, R.S. White, N. Yoshizawa, M. Antonietti, M-M. Titirici, Ordered Carbohydrate-Derived Porous Carbons, Chem Mater, 23, 2011, 4882–4885.

Characterisation of a new mesoporous active nanocarbon obtained by hazelnut shell charcoal

Yıl 2025, , 55 - 60, 31.01.2025
https://doi.org/10.51435/turkjac.1606566

Öz

In recent years, ordered porous carbon materials (OPCM) have critical application in many important fields because of their porous structure and huge spesific surface area.
Some spesific properties of ordered porous carbon materials like low density, chemical stability, strong mechanical strength, and very good electrical conductivity provide using them in spesific and advenced technologic field.
They get extensive usage area especially, as an electrod in electrochemistry, hydrogen storage, heterogen catalys, gas adsorbtion and as an adsorbent in seperation processing.
Ordered porous materials are classified base on pore radius (a) microporous (pore size <2 nm), mesoporous (pore size >2 nm<50 nm) and macroporous (pore size > 50 nm).
Traditional porous carbon materials like activated carbon and carbon molecular sieves are activated, via firstly carbonisation of charcoal, wood, fruit shell, fruit seed and natural polymers and then physical and chemical activation of them.
In this study, fine granulated hazelnut shell was mixed together with SBA-15 consist of family of mesoporous silica nanoparticul (MSN) as a template, and then half of it carbonised again together in furnace at 900oC in nitrogen atmosphere (FC). Other half of it used without carbonisation(F).
Obtained ordered porous carbon materials (FC and F) from hazelnut shell coal were characterised by thermal gravimetry (TG/DTA), N2 adsorbtion-desorbtion isoterm, X-ray powder diffraction, SEM/TEM and Elemental Analysis.

Kaynakça

  • G. Newcombe, D. Dixon, Interface Science in Drinking Water Treatment (1. baskı), 2006, NSW Australia: Elsevier.
  • K. Sezer, Investigation of the Usability of Activated Carbon Produced from Sugar Beet Pulp for the Adsorption Of 2,4-D and Metribuzin Pesticides in Wastewaters, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, 2010.
  • M. Yalçın, A.I. Arol, Production of Activated Carbon from Domestic Sources for Gold Metallurgy (özet), Türkiye XIII Madencilik Kongresi, 1993, Türkiye, 413‐426.
  • E.Y. Küçükgül, Determination of Commercial Activated Carbon Production and Properties, J Eng Fac Dokuz Eylul Univ, 6, 2004, 41-56.
  • Z. Sayın, C. Kumaş, B. Ergül, Activated Carbon Production From Hazelnut Shells, Afyon Kocatepe Univ J Sci Eng, 16, 2016, 025805(409‐419).
  • J.S. Beck, D.C. Calabro, S.B. McCullen, B.P. Pelrine, K.D. Schmitt, J.C. Vartuli, Method for Functionalizing Synthetic Mesoporous Crystalline Material, 2018, U.S. Patent 2.069.722.
  • J. Chen, N. Xia, T. Zhou, S. Tan, F. Jiang, D. Yuan, Mesoporous carbon spheres: Synthesis, characterization and supercapacitance, Int J Electrochem Sci, 4, 2009, 1063-1073.
  • C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature, 359, 1992, 710-712.
  • A. Monnier, E. Schüth, Q. Huo, D. Kumar, D. Margolese, R.S. Maxwell, G.D. Stucky, M. Krishnamurty, P. Petroff, A. Firoouzi, M. Janicke, B.F. Chmelka, Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures, Science, 261, 1993, 1299-1303.
  • M.A. Karakassides, A. Bourlinos, D. Petridis, L. Coche-Guerente, P. Labbe, Synthesis and characterization of copper containing mesoporous silicas, J Mater Chem, 10, 2000, 403–408.
  • J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenkert, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J Am Chem Soc, 114, 1992, 10834–10843.
  • D.J. Zhao, Q.L. Sun, G.D. Stucky, Morphological control of highly ordered mesoporous silica SBA-15, Chem Mater, 12, 2000, 275–279.
  • M. Colilla, E. Balas, M. Manzano, M. Vallet-Regí, Novel method to enlarge the surface area of SBA-15, Chem Mater, 19, 2007, 3099–3101.
  • J. Puputti, H. Jin, J. Rosenholm, H. Jiang, M. Lindén, The use of an impure inorganic precursor for the synthesis of highly siliceous mesoporous materials under acidic conditions, Microporous Mesoporous Mater, 126, 2009, 272–275.
  • D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J Am Chem Soc, 120, 1998, 6024-6036.
  • K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl Chem, 57, 1985, 603–619.
  • Z.A. AlOthman, A Review: Fundamental Aspects of Silicate Mesoporous Materials, Materials, 5, 2012, 2874-2902.
  • J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials, Adv Mater, 18, 2006, 2073-2094.
  • R.K. Dash, G. Yushin, Y. Gogotsi, Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide, Microporous Mesoporous Mater, 86, 2005, 50–57.
  • A. Eftekhari, Z. Fan, Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion, Mater Chem Front, 1, 2017, 1001–1027.
  • Y. Şentürk, Synthesis of Mesoporous Nano Particule, Investigation of Adsorbtion of Glyphosate Derivative Herbicides on This Materials, Yüksek Lisans Tezi, Giresun Üniversitesi, Fen Bilimleri Enstitüsü, 2017.
  • Z. Hu, M.P. Srinivasan, Mesoporous high-surface area activated carbon, Microporous Mesoporous Mater, 43, 2001, 267–275.
  • S. Kubo, R.S. White, N. Yoshizawa, M. Antonietti, M-M. Titirici, Ordered Carbohydrate-Derived Porous Carbons, Chem Mater, 23, 2011, 4882–4885.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya (Diğer)
Bölüm Research Articles
Yazarlar

Hakan Akgün 0000-0003-3586-4194

Birsen Şengül Oksal 0000-0002-6979-7332

Adile Bektas 0009-0003-2649-0968

Hakan Bektaş 0000-0002-5202-7323

Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 25 Aralık 2024
Kabul Tarihi 24 Ocak 2025
Yayımlandığı Sayı Yıl 2025

Kaynak Göster

APA Akgün, H., Oksal, B. Ş., Bektas, A., Bektaş, H. (2025). Characterisation of a new mesoporous active nanocarbon obtained by hazelnut shell charcoal. Turkish Journal of Analytical Chemistry, 7(1), 55-60. https://doi.org/10.51435/turkjac.1606566
AMA Akgün H, Oksal BŞ, Bektas A, Bektaş H. Characterisation of a new mesoporous active nanocarbon obtained by hazelnut shell charcoal. TurkJAC. Ocak 2025;7(1):55-60. doi:10.51435/turkjac.1606566
Chicago Akgün, Hakan, Birsen Şengül Oksal, Adile Bektas, ve Hakan Bektaş. “Characterisation of a New Mesoporous Active Nanocarbon Obtained by Hazelnut Shell Charcoal”. Turkish Journal of Analytical Chemistry 7, sy. 1 (Ocak 2025): 55-60. https://doi.org/10.51435/turkjac.1606566.
EndNote Akgün H, Oksal BŞ, Bektas A, Bektaş H (01 Ocak 2025) Characterisation of a new mesoporous active nanocarbon obtained by hazelnut shell charcoal. Turkish Journal of Analytical Chemistry 7 1 55–60.
IEEE H. Akgün, B. Ş. Oksal, A. Bektas, ve H. Bektaş, “Characterisation of a new mesoporous active nanocarbon obtained by hazelnut shell charcoal”, TurkJAC, c. 7, sy. 1, ss. 55–60, 2025, doi: 10.51435/turkjac.1606566.
ISNAD Akgün, Hakan vd. “Characterisation of a New Mesoporous Active Nanocarbon Obtained by Hazelnut Shell Charcoal”. Turkish Journal of Analytical Chemistry 7/1 (Ocak 2025), 55-60. https://doi.org/10.51435/turkjac.1606566.
JAMA Akgün H, Oksal BŞ, Bektas A, Bektaş H. Characterisation of a new mesoporous active nanocarbon obtained by hazelnut shell charcoal. TurkJAC. 2025;7:55–60.
MLA Akgün, Hakan vd. “Characterisation of a New Mesoporous Active Nanocarbon Obtained by Hazelnut Shell Charcoal”. Turkish Journal of Analytical Chemistry, c. 7, sy. 1, 2025, ss. 55-60, doi:10.51435/turkjac.1606566.
Vancouver Akgün H, Oksal BŞ, Bektas A, Bektaş H. Characterisation of a new mesoporous active nanocarbon obtained by hazelnut shell charcoal. TurkJAC. 2025;7(1):55-60.