Araştırma Makalesi
BibTex RIS Kaynak Göster

Geri Dönüştürülmüş PVDF Malzemeden Yüksek Beta-Faz İçerikli Granüllerin Sentezi: Proses Parametrelerinin ve Seramik Dolgu Maddelerinin Etkisi.

Yıl 2026, Cilt: 8 Sayı: 1, 20 - 28, 31.01.2026
https://doi.org/10.51435/turkjac.1760136

Öz

Poli(viniliden florür) (PVDF), piezoelektriği, termal kararlılığı ve mekanik dayanımı nedeniyle biyomedikal, elektronik ve enerji uygulamalarında kullanılan yüksek performanslı bir polimerdir. Bu özellikler, polimerin çeşitli polimorfik fazlara, en önemlisi de elektroaktif beta-faza kristalleşebilme yeteneğiyle yakından ilişkilidir. Bu çalışma, kullanılmış PVDF çubuklarının geri dönüştürülmesi, malzemenin DMF içinde çözülmesi ve kontrollü sıcaklıklarda deiyonize suya çöktürülmesi yoluyla beta-fazı açısından zengin PVDF granülleri üretmek için sürdürülebilir bir yöntem önermektedir. Çöktürme sıcaklığı ve PVDF konsantrasyonu dahil olmak üzere proses koşulları, beta-faz oluşumu üzerindeki etkileri açısından sistematik olarak incelenmiştir. Ek olarak, seramik dolgu maddeleri olan Stronsiyum Titanat (SrTiO3) ve Nikel Ferrit (NiFe2O4)'in faz bileşimi üzerindeki etkisi değerlendirilmiştir. Elektroaktif beta-faz ve polar olmayan alfa-fazın göreceli içeriğini nicel olarak belirlemek için Fourier Dönüşümlü Kızılötesi (FTIR) Spektroskopisi kullanılmıştır. Sonuçlar, düşük çöktürme sıcaklıklarının (0°C) ve daha yüksek PVDF konsantrasyonlarının (1:10 PVDF/DMF oranı) beta-faz oluşumunu önemli ölçüde artırdığını ve 0°C'de beta/alfa oranlarının genellikle 0,90'ı aştığını göstermektedir. Ayrıca, NiFe2O4 dolgu maddeleri, özellikle 0°C'de beta-faz kristalleşmesini önemli ölçüde teşvik etmiş ve %60 yükleme için beta/alfa oranlarını ~1,0'a kadar çıkarmıştır. Buna karşılık, SrTiO3 dolgu maddeleri beta-faz oluşumunu baskılamıştır. Bu ileri dönüşüm (upcycling) yaklaşımı, yalnızca atık değerlendirmeye katkıda bulunmakla kalmaz, aynı zamanda piezoelektrik uygulamalar için fonksiyonel malzemelerin geliştirilmesini de mümkün kılar.

Kaynakça

  • E. Esmaeili, M. Soleimani, M.A. Ghiass, S. Hatamie, S. Vakilian, M.S. Zomorrod, N. Sadeghzadeh, M. Vossoughi, S. Hosseinzadeh, Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells, J Cell Physiol, 234, 2018, 13617–13628.
  • S. Mohammadpourfazeli, S. Arash, A. Ansari, S. Yang, K. Mallick, R. Bagherzadeh, Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties, RSC Adv, 13, 2023, 370-387.
  • F. Ali, I. Parvez, M.I. Albakri, Enhancing the electroactive β-phase of PVDF filaments via feedstock processing, Smart Mater Struct, 34, 2025, 035012.
  • S. Swain, R. Lenka, T. Rautray, Synthetic strategy for the production of electrically polarized polyvinylidene fluoride-trifluoroethylene—co-polymer osseo-functionalized with hydroxyapatite scaffold, J Biomed Mater Res A, 112, 2024, 1675-1687.
  • M. Krutko, H.M. Poling, A. Bryan, M. Sharma, A. Singh, H.A. Reza, K.A. Wikenheiser‐Brokamp, T. Takebe, M.A. Helmrath, G.M. Harris, L. Esfandiari, Enhanced piezoelectric performance of PVDF-TRFE nanofibers through annealing for tissue engineering applications, bioRxiv, 2024.
  • S. Garain, S. Jana, T.K. Sinha, D. Mandal, Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator, ACS Appl Mater Interfaces, 8, 2016, 4532-4540.
  • S. Ma, Q. Sun, Y. Su, R. Chen, L. Wang, Experimental investigation of piezoelectricity of near field electrospun PVDF nanofibers, Telkomnika, 14, 2016, 145-151.
  • M. Sahu, S. Hajra, K. Lee, P.L. Deepti, K. Mistewicz, H.J. Kim, Piezoelectric nanogenerator based on lead-free flexible PVDF-barium titanate composite films for driving low power electronics, Crystals, 11, 2021, 85.
  • P.K. Szewczyk, A. Gradys, S.K. Kim, L. Persano, M. Marzec, A. Kryshtal, T. Busolo, A. Toncelli, D. Pisignano, A. Bernasik, S. Kar-Narayan, P. Sajkiewicz, U. Stachewicz, Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting, ACS Appl Mater Interfaces, 12, 2020, 13575–13583.
  • A. Jain, S. Minajagi, E. Dange, S.U. Bhover, Y.T. Dharanendra, Impact and acoustic emission performance of polyvinylidene fluoride sensor embedded in glass fiber-reinforced polymer composite structure, Polym Polym Compos, 29, 2020, 354-361.
  • J. Pärssinen, H. Hammarén, R. Rahikainen, V. Sencadas, C. Ribeiro, S. Vanhatupa, S. Miettinen, S. Lanceros-Méndez, V.P. Hytönen, Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride), J Biomed Mater Res A, 103, 2014, 919-928.
  • L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Properties and applications of the β phase poly(vinylidene fluoride), Polymers, 10, 2018, 228.
  • J.S. Andrew, D.R. Clarke, Enhanced ferroelectric phase content of polyvinylidene difluoride fibers with the addition of magnetic nanoparticles, Langmuir, 24, 2008, 8435–8438.
  • G.H. Kim, S.M. Hong, Y. Seo, Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development, Phys Chem Chem Phys, 11, 2009, 10506-10512.
  • C. Hwang, W. Song, G. Song, Y. Wu, S. Lee, H.B. Son, J. Kim, N. Liu, S. Park, H. Song, A three-dimensional nano-web scaffold of ferroelectric beta-PVDF fibers for lithium metal plating and stripping, ACS Appl Mater Interfaces, 12, 2020, 29235–29241.
  • T. Nguyen, P.N. Vu, H.T. Trinh, Enhancement of the crystalline phase in poly(vinylidene fluoride) by using the electrospinning technique and graphene oxide composition, Sci Tech Dev J, 26, 2023, 2741-2747.
  • S. Kaniapan, A. Prathuru, N.H. Faisal, Spin-coated synthesis of polyvinylidene fluoride-barium titanate nanocomposite piezoelectric flexible thin films, Proc SPIE 13205, Advanced Materials, Biomaterials, and Manufacturing Technologies for Security and Defence II, 2024, United Kingdom, 1320509.
  • N. Govinna, I. Sadeghi, A. Asatekin, P. Cebe, Thermal properties and structure of electrospun blends of PVDF with a fluorinated copolymer, J Polym Sci Part B Polym Phys, 57, 2019, 312–322.
  • M. Sharma, J.K. Quamara, A. Gaur, Behaviour of multiphase PVDF in (1−x)PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties, J Mater Sci Mater Electron, 29, 2018, 10875–10884.
  • S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity, J Alloys Compd, 715, 2017, 29-36.
  • X. Meng, Q. Li, Z. Hu, M. Guo, Microfluidic fabrication of β-phase enriched poly(vinylidene fluoride) microfibers toward flexible piezoelectric sensor, J Polym Sci, 60, 2022, 1718-1726.
  • E. Rocha-Rangel, J. López-Hernández, J.A. Rodríguez-García, E.N. Armendáriz-Mireles, C.A. Calles-Arriaga, W.J. Pech-Rodríguez, J.A. Castillo-Robles, Dielectric properties of strontium titanate synthesized by means of solid state reactions activated mechanically, Materia-Brazil, 22, 2017, e11818.
  • A. Jain, K. Kandwal, R. Kumar, S. Sharma, R. Dhiman, H. Sharma, K.S. Naidu, S. Gupta, A. Kumar, R. Singh, Synergistic enhancement of super capacitive performance through sol-gel auto-combustion synthesis of nickel ferrite nano-particles and reduced graphene oxide hybrid nano-composite electrode, J Inorg Organomet Polym, 2025.
  • A.S. Zahari, M. Hafiz, I.I. Misnon, Influence of molecular weight on the morphology and structure of electrospun polyvinylidene fluoride (PVDF), Mater Sci Forum, 1025, 2021, 293–298.
  • S.M. Seraji, Q. Guo, Nanophase morphology and crystallization in poly(vinylidene fluoride)/polydimethylsiloxane‐block‐poly(methylmethacrylate)‐block‐polystyrene blends, Polym Int, 68, 2019, 1064–1073.
  • Y. Ahn, J. Lim, S.M. Hong, J. Lee, J. Ha, H.J. Choi, Y. Seo, Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride), J Phys Chem C, 117, 2013, 11791–1179.
  • R.L. Hadimani, D.V. Bayramol, N. Sion, T. Shah, L. Qian, S. Shi, E. Siores, Continuous production of piezoelectric PVDF fibre for e-textile applications, Smart Mater Struct, 22, 2013, 075017.
  • S. Satapathy, S. Pawar, P.K. Gupta, K.B.R. Varma, Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent, Bull Mater Sci, 34, 2011, 727–733.
  • I.O. Pariy, A. Ivanova, V.V. Shvartsman, D.C. Lupascu, G.B. Sukhorukov, T. Ludwig, A. Bartasyte, S. Mathur, M.A. Surmeneva, R.A. Surmenev, Piezoelectric response in hybrid micropillar arrays of poly(vinylidene fluoride) and reduced graphene oxide, Polymers, 11, 2019, 1065.
  • S. Janakiraman, A. Surendran, S. Ghosh, S. Anandhan, A. Venimadhav, Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency, Solid State Ionics, 292, 2016, 130-135.
  • Y. Zhao, W. Yang, Y. Zhou, Y. Chen, X. Cao, Y. Yang, J. Xu, Y. Jiang, Effect of crystalline phase on the dielectric and energy storage properties of poly(vinylidene fluoride), J Mater Sci Mater Electron, 27, 2016, 7280–7286.
  • E. Ghafari, X. Jiang, N. Lu, Surface morphology and beta-phase formation of single polyvinylidene fluoride (PVDF) composite nanofibers, Adv Compos Hybrid Mater, 1, 2018, 332–340.
  • M.V. Le, N.Q.D. Vo, Q.C. Le, V.A. Tran, T.Q.P. Phan, C.W. Huang, V.H. Nguyen, Manipulating the structure and characterization of Sr1−xLaxTiO3 nanocubes toward the photodegradation of 2-naphthol under artificial solar light, Catalysts, 11, 2021, 564.
  • T.M. Naidu, P.V. Lakshmi Narayana, Synthesis and characterization of Fe-TiO2 and NiFe2O4 nanoparticles and its thermal properties, J Nanosci Tech, 5, 2019, 769-772.
  • H. Abdolmaleki, S. Agarwala, PVDF-BaTiO3 nanocomposite inkjet inks with enhanced β-phase crystallinity for printed electronics, Polymers, 12, 2020, 2430.

Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers

Yıl 2026, Cilt: 8 Sayı: 1, 20 - 28, 31.01.2026
https://doi.org/10.51435/turkjac.1760136

Öz

Polyvinylidene fluoride (PVDF) is a high-performance polymer utilized in biomedical, electronic, and energy applications due to its piezoelectricity, thermal stability, and mechanical strength. These properties are closely linked to its ability to crystallize into several polymorphic phases, most importantly, the electroactive beta-phase. This study proposes a sustainable method to fabricate beta-phase-rich PVDF granules by recycling used PVDF rods, dissolving the material in DMF, and precipitating it into deionized water at controlled temperatures. The process conditions, including precipitation temperature and PVDF concentration, were systematically investigated for their effect on beta-phase formation. Additionally, the influence of ceramic fillers, Strontium Titanate (SrTiO₃) and Nickel Ferrite (NiFe₂O₄), on phase composition was evaluated. Fourier Transform Infrared (FTIR) Spectroscopy was used to quantify the relative content of the electroactive beta-phase and the non-polar alpha-phase. The results indicate that low precipitation temperatures (0°C) and higher PVDF concentrations (1:10 PVDF/DMF ratio) significantly enhance beta-phase formation, with beta/alpha ratios often exceeding 0.90 at 0°C. Furthermore, NiFe₂O₄ fillers considerably promoted beta-phase crystallization, especially at 0°C, achieving beta/alpha ratios up to ~1.0 for 60% loading. In contrast, SrTiO₃ fillers suppressed beta-phase formation. This upcycling approach not only contributes to waste valorization but also enables the development of functional materials for piezoelectric applications.

Kaynakça

  • E. Esmaeili, M. Soleimani, M.A. Ghiass, S. Hatamie, S. Vakilian, M.S. Zomorrod, N. Sadeghzadeh, M. Vossoughi, S. Hosseinzadeh, Magnetoelectric nanocomposite scaffold for high yield differentiation of mesenchymal stem cells to neural-like cells, J Cell Physiol, 234, 2018, 13617–13628.
  • S. Mohammadpourfazeli, S. Arash, A. Ansari, S. Yang, K. Mallick, R. Bagherzadeh, Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties, RSC Adv, 13, 2023, 370-387.
  • F. Ali, I. Parvez, M.I. Albakri, Enhancing the electroactive β-phase of PVDF filaments via feedstock processing, Smart Mater Struct, 34, 2025, 035012.
  • S. Swain, R. Lenka, T. Rautray, Synthetic strategy for the production of electrically polarized polyvinylidene fluoride-trifluoroethylene—co-polymer osseo-functionalized with hydroxyapatite scaffold, J Biomed Mater Res A, 112, 2024, 1675-1687.
  • M. Krutko, H.M. Poling, A. Bryan, M. Sharma, A. Singh, H.A. Reza, K.A. Wikenheiser‐Brokamp, T. Takebe, M.A. Helmrath, G.M. Harris, L. Esfandiari, Enhanced piezoelectric performance of PVDF-TRFE nanofibers through annealing for tissue engineering applications, bioRxiv, 2024.
  • S. Garain, S. Jana, T.K. Sinha, D. Mandal, Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator, ACS Appl Mater Interfaces, 8, 2016, 4532-4540.
  • S. Ma, Q. Sun, Y. Su, R. Chen, L. Wang, Experimental investigation of piezoelectricity of near field electrospun PVDF nanofibers, Telkomnika, 14, 2016, 145-151.
  • M. Sahu, S. Hajra, K. Lee, P.L. Deepti, K. Mistewicz, H.J. Kim, Piezoelectric nanogenerator based on lead-free flexible PVDF-barium titanate composite films for driving low power electronics, Crystals, 11, 2021, 85.
  • P.K. Szewczyk, A. Gradys, S.K. Kim, L. Persano, M. Marzec, A. Kryshtal, T. Busolo, A. Toncelli, D. Pisignano, A. Bernasik, S. Kar-Narayan, P. Sajkiewicz, U. Stachewicz, Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting, ACS Appl Mater Interfaces, 12, 2020, 13575–13583.
  • A. Jain, S. Minajagi, E. Dange, S.U. Bhover, Y.T. Dharanendra, Impact and acoustic emission performance of polyvinylidene fluoride sensor embedded in glass fiber-reinforced polymer composite structure, Polym Polym Compos, 29, 2020, 354-361.
  • J. Pärssinen, H. Hammarén, R. Rahikainen, V. Sencadas, C. Ribeiro, S. Vanhatupa, S. Miettinen, S. Lanceros-Méndez, V.P. Hytönen, Enhancement of adhesion and promotion of osteogenic differentiation of human adipose stem cells by poled electroactive poly(vinylidene fluoride), J Biomed Mater Res A, 103, 2014, 919-928.
  • L. Ruan, X. Yao, Y. Chang, L. Zhou, G. Qin, X. Zhang, Properties and applications of the β phase poly(vinylidene fluoride), Polymers, 10, 2018, 228.
  • J.S. Andrew, D.R. Clarke, Enhanced ferroelectric phase content of polyvinylidene difluoride fibers with the addition of magnetic nanoparticles, Langmuir, 24, 2008, 8435–8438.
  • G.H. Kim, S.M. Hong, Y. Seo, Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: β-phase development, Phys Chem Chem Phys, 11, 2009, 10506-10512.
  • C. Hwang, W. Song, G. Song, Y. Wu, S. Lee, H.B. Son, J. Kim, N. Liu, S. Park, H. Song, A three-dimensional nano-web scaffold of ferroelectric beta-PVDF fibers for lithium metal plating and stripping, ACS Appl Mater Interfaces, 12, 2020, 29235–29241.
  • T. Nguyen, P.N. Vu, H.T. Trinh, Enhancement of the crystalline phase in poly(vinylidene fluoride) by using the electrospinning technique and graphene oxide composition, Sci Tech Dev J, 26, 2023, 2741-2747.
  • S. Kaniapan, A. Prathuru, N.H. Faisal, Spin-coated synthesis of polyvinylidene fluoride-barium titanate nanocomposite piezoelectric flexible thin films, Proc SPIE 13205, Advanced Materials, Biomaterials, and Manufacturing Technologies for Security and Defence II, 2024, United Kingdom, 1320509.
  • N. Govinna, I. Sadeghi, A. Asatekin, P. Cebe, Thermal properties and structure of electrospun blends of PVDF with a fluorinated copolymer, J Polym Sci Part B Polym Phys, 57, 2019, 312–322.
  • M. Sharma, J.K. Quamara, A. Gaur, Behaviour of multiphase PVDF in (1−x)PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties, J Mater Sci Mater Electron, 29, 2018, 10875–10884.
  • S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0–3 connectivity, J Alloys Compd, 715, 2017, 29-36.
  • X. Meng, Q. Li, Z. Hu, M. Guo, Microfluidic fabrication of β-phase enriched poly(vinylidene fluoride) microfibers toward flexible piezoelectric sensor, J Polym Sci, 60, 2022, 1718-1726.
  • E. Rocha-Rangel, J. López-Hernández, J.A. Rodríguez-García, E.N. Armendáriz-Mireles, C.A. Calles-Arriaga, W.J. Pech-Rodríguez, J.A. Castillo-Robles, Dielectric properties of strontium titanate synthesized by means of solid state reactions activated mechanically, Materia-Brazil, 22, 2017, e11818.
  • A. Jain, K. Kandwal, R. Kumar, S. Sharma, R. Dhiman, H. Sharma, K.S. Naidu, S. Gupta, A. Kumar, R. Singh, Synergistic enhancement of super capacitive performance through sol-gel auto-combustion synthesis of nickel ferrite nano-particles and reduced graphene oxide hybrid nano-composite electrode, J Inorg Organomet Polym, 2025.
  • A.S. Zahari, M. Hafiz, I.I. Misnon, Influence of molecular weight on the morphology and structure of electrospun polyvinylidene fluoride (PVDF), Mater Sci Forum, 1025, 2021, 293–298.
  • S.M. Seraji, Q. Guo, Nanophase morphology and crystallization in poly(vinylidene fluoride)/polydimethylsiloxane‐block‐poly(methylmethacrylate)‐block‐polystyrene blends, Polym Int, 68, 2019, 1064–1073.
  • Y. Ahn, J. Lim, S.M. Hong, J. Lee, J. Ha, H.J. Choi, Y. Seo, Enhanced piezoelectric properties of electrospun poly(vinylidene fluoride)/multiwalled carbon nanotube composites due to high β-phase formation in poly(vinylidene fluoride), J Phys Chem C, 117, 2013, 11791–1179.
  • R.L. Hadimani, D.V. Bayramol, N. Sion, T. Shah, L. Qian, S. Shi, E. Siores, Continuous production of piezoelectric PVDF fibre for e-textile applications, Smart Mater Struct, 22, 2013, 075017.
  • S. Satapathy, S. Pawar, P.K. Gupta, K.B.R. Varma, Effect of annealing on phase transition in poly(vinylidene fluoride) films prepared using polar solvent, Bull Mater Sci, 34, 2011, 727–733.
  • I.O. Pariy, A. Ivanova, V.V. Shvartsman, D.C. Lupascu, G.B. Sukhorukov, T. Ludwig, A. Bartasyte, S. Mathur, M.A. Surmeneva, R.A. Surmenev, Piezoelectric response in hybrid micropillar arrays of poly(vinylidene fluoride) and reduced graphene oxide, Polymers, 11, 2019, 1065.
  • S. Janakiraman, A. Surendran, S. Ghosh, S. Anandhan, A. Venimadhav, Electroactive poly(vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency, Solid State Ionics, 292, 2016, 130-135.
  • Y. Zhao, W. Yang, Y. Zhou, Y. Chen, X. Cao, Y. Yang, J. Xu, Y. Jiang, Effect of crystalline phase on the dielectric and energy storage properties of poly(vinylidene fluoride), J Mater Sci Mater Electron, 27, 2016, 7280–7286.
  • E. Ghafari, X. Jiang, N. Lu, Surface morphology and beta-phase formation of single polyvinylidene fluoride (PVDF) composite nanofibers, Adv Compos Hybrid Mater, 1, 2018, 332–340.
  • M.V. Le, N.Q.D. Vo, Q.C. Le, V.A. Tran, T.Q.P. Phan, C.W. Huang, V.H. Nguyen, Manipulating the structure and characterization of Sr1−xLaxTiO3 nanocubes toward the photodegradation of 2-naphthol under artificial solar light, Catalysts, 11, 2021, 564.
  • T.M. Naidu, P.V. Lakshmi Narayana, Synthesis and characterization of Fe-TiO2 and NiFe2O4 nanoparticles and its thermal properties, J Nanosci Tech, 5, 2019, 769-772.
  • H. Abdolmaleki, S. Agarwala, PVDF-BaTiO3 nanocomposite inkjet inks with enhanced β-phase crystallinity for printed electronics, Polymers, 12, 2020, 2430.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Raşit Sezer 0000-0001-9655-2114

Ahmet Buğra Başer 0009-0007-1184-4486

Gönderilme Tarihi 8 Ağustos 2025
Kabul Tarihi 12 Kasım 2025
Yayımlanma Tarihi 31 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 8 Sayı: 1

Kaynak Göster

APA Sezer, R., & Başer, A. B. (2026). Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers. Turkish Journal of Analytical Chemistry, 8(1), 20-28. https://doi.org/10.51435/turkjac.1760136
AMA 1.Sezer R, Başer AB. Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers. TurkJAC. 2026;8(1):20-28. doi:10.51435/turkjac.1760136
Chicago Sezer, Raşit, ve Ahmet Buğra Başer. 2026. “Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers”. Turkish Journal of Analytical Chemistry 8 (1): 20-28. https://doi.org/10.51435/turkjac.1760136.
EndNote Sezer R, Başer AB (01 Ocak 2026) Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers. Turkish Journal of Analytical Chemistry 8 1 20–28.
IEEE [1]R. Sezer ve A. B. Başer, “Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers”, TurkJAC, c. 8, sy 1, ss. 20–28, Oca. 2026, doi: 10.51435/turkjac.1760136.
ISNAD Sezer, Raşit - Başer, Ahmet Buğra. “Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers”. Turkish Journal of Analytical Chemistry 8/1 (01 Ocak 2026): 20-28. https://doi.org/10.51435/turkjac.1760136.
JAMA 1.Sezer R, Başer AB. Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers. TurkJAC. 2026;8:20–28.
MLA Sezer, Raşit, ve Ahmet Buğra Başer. “Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers”. Turkish Journal of Analytical Chemistry, c. 8, sy 1, Ocak 2026, ss. 20-28, doi:10.51435/turkjac.1760136.
Vancouver 1.Sezer R, Başer AB. Synthesis of high beta-phase content granules from recycled PVDF material: Effect of process parameters and ceramic fillers. TurkJAC [Internet]. 01 Ocak 2026;8(1):20-8. Erişim adresi: https://izlik.org/JA47YE59UP
...