Araştırma Makalesi
BibTex RIS Kaynak Göster

Korannülen'den Polisiklik Süperhalojenler Tasarlamak İçin Verimli Bir Strateji: Bir DFT Çalışması

Yıl 2026, Cilt: 8 Sayı: 1, 1 - 8, 31.01.2026
https://doi.org/10.51435/turkjac.1768491

Öz

Süperhalojenler, elektron ilgileri (EA) ve dikey ayrılma enerjileri (VDE) halojenlerinkini aşan moleküler türler olup, ileri fonksiyonel malzemelerde umut verici uygulamalara sahiptir. Bu çalışmada, koranülenin (C₁₀H₁₀) hidrojen atomlarının güçlü elektron çekici ligandlarla (F, CN ve BO) ikame edilmesi yoluyla, aromatik iskeletin bütünlüğü korunarak, polisiklik süperhalojenler tasarlamak için bir strateji öneriyoruz. Yoğunluk fonksiyonel teorisi (DFT) ile B3LYP/6-311++G(d,p) düzeyinde yapılan hesaplamalar, kısmi ikamenin (C₁₀H₅X₅), koranülenin 0,676 eV olan EA değerini, C₁₀H₅F₅ için 1,413 eV’a, C₁₀H₅(CN)₅ için 3,016 eV’a ve C₁₀H₅(BO)₅ için 2,896 eV’a yükselttiğini göstermektedir. Bununla birlikte, bu değerler hâlâ halojen referans değerinin (3,64 eV) altında kalmaktadır. Buna karşılık, tam ikame (C₁₀X₁₀) belirgin şekilde daha yüksek elektron alıcı kapasitelere yol açmaktadır. C₁₀F₁₀ mütevazı değerlere sahipken (EA = 2,052 eV, VDE = 2,249 eV), C₁₀(CN)₁₀ ve C₁₀(BO)₁₀ sırasıyla 4,513 ve 4,458 eV EA, 4,602 ve 4,583 eV VDE değerlerine ulaşarak, kloru (3,64 eV) aşmakta ve onları gerçek polisiklik süperhalojenler olarak sağlam bir şekilde konumlandırmaktadır. Yapısal analiz, koranülen π-iskeletinin büyük ölçüde korunduğunu ve tüm türevlerde C–C bağ uzunluklarının 1,38–1,47 Å aralığında kaldığını doğrulamaktadır. Bu bulgular, C₁₀(CN)₁₀ ve C₁₀(BO)₁₀’u tamamen organik, yeni bir polisiklik süperhalojen sınıfı olarak tanıtarak, süperhalojen kimyasının kapsamını geleneksel metal- ve halojen-merkezli sistemlerin ötesine genişletmektedir.

Kaynakça

  • G.L. Gutsev, A.I. Boldyrev, DVM-Xα calculations on the ionization potentials of MXk+1− complex anions and the electron affinities of MXk+1 “superhalogens”, Chem Phys, 56, 1981, 277–283.
  • P. Jena, Q. Sun, Super atomic clusters: design rules and potential for building blocks of materials, Chem Rev, 118, 2018, 5755–5870.
  • Y. Gao, M. Wu, P. Jena, A family of ionic supersalts with covalent-like directionality and unconventional multiferroicity, Nat Commun, 12, 2021, 1331.
  • A.K. Srivastava, Recent progress on the design and applications of superhalogens, Chem Commun, 59, 2023, 5943–5960.
  • X.-B. Wang, C.-F. Ding, L.-S. Wang, A.I. Boldyrev, J. Simons, First experimental photoelectron spectra of superhalogens and their theoretical interpretations, J Chem Phys, 110, 1999, 4763–4771.
  • P. Koirala, M. Willis, B. Kiran, A.K. Kandalam, P. Jena, Superhalogen properties of fluorinated coinage metal clusters, J Phys Chem C, 114, 2010, 16018–16024.
  • M.M. Wu, H. Wang, Y.J. Ko, Q. Wang, Q. Sun, B. Kiran, A.K. Kandalam, K.H. Bowen, P. Jena, Manganese-based magnetic superhalogens, Angew Chem, 123, 2011, 2616–2620.
  • I. Anusiewicz, Electrophilic substituents as ligands in superhalogen anions, J Phys Chem A, 113, 2009, 6511–6516.
  • S. Smuczyńska, P. Skurski, Halogenoids as ligands in superhalogen anions, Inorg Chem, 48, 2009, 10231–10238.
  • S. Behera, D. Samanta, P. Jena, Nitrate superhalogens as building blocks of hypersalts, J Phys Chem A, 117, 2013, 5428–5434.
  • B.Z. Child, S. Giri, S. Gronert, P. Jena, Aromatic superhalogens, Chem Eur J, 20, 2014, 4736–4745.
  • P. Jena, Beyond the periodic table of elements: the role of superatoms, J Phys Chem Lett, 4, 2013, 1432–1442.
  • H. Zhao, J. Zhou, P. Jena, Stability of B12(CN)122−: Implications for lithium and magnesium ion batteries, Angew Chem, 128, 2016, 3768–3772.
  • B. Pathak, D. Samanta, R. Ahuja, P. Jena, Borane derivatives: a new class of super- and hyperhalogens, ChemPhysChem, 12, 2011, 2423–2428.
  • Q. Xue, M. Zhong, J. Zhou, P. Jena, Rational design of endohedral superhalogens without using metal cations and electron counting rules, J Phys Chem A, 126, 2022, 3536–3542.
  • S. Giri, B.Z. Child, P. Jena, Organic superhalogens, ChemPhysChem, 15, 2014, 2903–2908.
  • H. Banjade, H. Fang, P. Jena, Metallo-boranes: a class of unconventional superhalogens defying electron counting rules, Nanoscale, 14, 2022, 1767–1778.
  • A.K. Srivastava, A simple strategy to design polycyclic superhalogens, J Phys Chem A, 127, 2023, 4867–4872.
  • A.K. Srivastava, Boronyl-based polycyclic superhalogens, J Phys Chem A, 127, 2023, 10406–10411.
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys Rev A, 38, 1988, 3098–3100.
  • C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys Rev B, 37, 1988, 785–789.
  • R. Ditchfield, W.J. Hehre, J.A. Pople, Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules, J Chem Phys, 54, 1971, 724–728.
  • W.J. Hehre, R. Ditchfield, J.A. Pople, Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules, J Chem Phys, 56, 1972, 2257–2261.
  • M.J. Frisch et al., Gaussian 16, 2016, Wallingford CT, Gaussian Inc.
  • J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer, S. Nandi, G.B. Ellison, Atomic and molecular electron affinities: photoelectron experiments and theoretical computations, Chem Rev, 102, 2002, 231–282.
  • S. Liu, D. Lu, X. Wang, D. Ding, D. Kong, Z. Wang, Y. Zhao, Topology dictates function: controlled ROS production and mitochondria accumulation via curved carbon materials, J Mater Chem B, 5, 2017, 4918–4925.
  • K. Merkel, J. Greiner, F. Ortmann, Understanding the electronic pi-system of 2D covalent organic frameworks with Wannier functions, Sci Rep, 13, 2023, 1685.
  • P. Skurski, Superhalogens – Enormously Strong Electron Acceptors, Superatoms: Principles, Synthesis and Applications, Editors: P. Jena, Q. Sun, 2021, USA, Wiley.
  • C. Sikorska, Design and investigation of superatoms for redox applications: first-principles studies, Micromachines, 15, 2024, 78.
  • J. Zhang, P. Yang, Z.-R. Sun, X.-B. Wang, Covalently bound tetracoordinated organoborons as superhalogens: a combined negative ion photoelectron spectroscopy and theoretical study, J Phys Chem A, 118, 2014, 8074–8080.
  • S. Sinha, P. Jena, S. Giri, Functionalized nona-silicide [Si9R3] Zintl clusters: a new class of superhalogens, Phys Chem Chem Phys, 24, 2022, 21105–21111.
  • K.M. Griffing, J. Simons, Theoretical studies of molecular ions. Ionization potentials of CN− and BO−, J Chem Phys, 64, 1976, 3610–3614.
  • M. Watanabe, D. Ishimaru, N. Mizorogi, M. Kiuchi, J. Aihara, Thermodynamically and kinetically stable isomers of the C88 and C90 fullerenes, J Mol Struct-Theochem, 726, 2005, 11–16.
  • I. Świerszcz, I. Anusiewicz, Neutral and anionic superhalogen hydroxides, Chem Phys, 383, 2011, 93–100.
  • A.K. Srivastava, N. Misra, Gold oxyfluorides, Au(OF)n (n = 1–6): novel superhalogens with oxyfluoride ligands, New J Chem, 39, 2015, 9543–9549.
  • A.K. Kandalam, B. Kiran, P. Jena, S. Pietsch, G. Ganteför, Superhalogens beget superhalogens: a case study of (BO2)n oligomers, Phys Chem Chem Phys, 17, 2015, 26589–26593.
  • H. Wang, J. Li, J. Chen, Y. Bu, S.B. Cheng, Solvent field regulated superhalogen in pure and doped gold cluster anions, Chin Chem Lett, 34, 2023, 108222.
  • P. Jena, Superhalogens: a bridge between complex metal hydrides and Li ion batteries, J Phys Chem Lett, 6, 2015, 1119–1125.
  • L.P. Ding, L.T. Yang, P. Shao, Y.H. Tiandong, F.H. Zhang, C. Lu, Structures, mobilities, and electronic properties of functionalized silicene: superhalogen BO2 adsorption, Inorg Chem, 59, 2020, 5041–5049.

An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study

Yıl 2026, Cilt: 8 Sayı: 1, 1 - 8, 31.01.2026
https://doi.org/10.51435/turkjac.1768491

Öz

Superhalogens are molecular species with electron affinities (EA) and vertical detachment energies (VDE) that surpass those of halogens, offering promising applications in advanced functional materials. In this study, we propose a strategy for designing polycyclic superhalogens by substituting hydrogen atoms in corannulene (C10H10) with strongly electron-withdrawing ligands (F, CN, and BO), while maintaining the integrity of the aromatic framework. Density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level show that partial substitution (C10H5X5) enhances the EA of corannulene (0.676 eV) to 1.413 eV for C10H5F5, 3.016 eV for C10H5(CN)5, and 2.896 eV for C10H5(BO)5. However, these values remain below the halogen benchmark (3.64 eV). In contrast, complete substitution (C10X10) yields markedly higher electron-accepting capacities. While C10F10 exhibits modest values (EA = 2.052 eV, VDE = 2.249 eV), C10(CN)10 and C10(BO)10 reach EAs of 4.513 and 4.458 eV, and VDEs of 4.602 and 4.583 eV, respectively—exceeding chlorine (3.64 eV) and firmly establishing them as true polycyclic superhalogens. Structural analysis confirms that the corannulene π-framework remains largely intact, with C–C bond lengths preserved within 1.38–1.47 Å across all derivatives. These findings introduce C10(CN)10 and C10(BO)10 as a new class of all-organic polycyclic superhalogens, broadening the scope of superhalogen chemistry beyond traditional metal- and halogen-centered systems.

Kaynakça

  • G.L. Gutsev, A.I. Boldyrev, DVM-Xα calculations on the ionization potentials of MXk+1− complex anions and the electron affinities of MXk+1 “superhalogens”, Chem Phys, 56, 1981, 277–283.
  • P. Jena, Q. Sun, Super atomic clusters: design rules and potential for building blocks of materials, Chem Rev, 118, 2018, 5755–5870.
  • Y. Gao, M. Wu, P. Jena, A family of ionic supersalts with covalent-like directionality and unconventional multiferroicity, Nat Commun, 12, 2021, 1331.
  • A.K. Srivastava, Recent progress on the design and applications of superhalogens, Chem Commun, 59, 2023, 5943–5960.
  • X.-B. Wang, C.-F. Ding, L.-S. Wang, A.I. Boldyrev, J. Simons, First experimental photoelectron spectra of superhalogens and their theoretical interpretations, J Chem Phys, 110, 1999, 4763–4771.
  • P. Koirala, M. Willis, B. Kiran, A.K. Kandalam, P. Jena, Superhalogen properties of fluorinated coinage metal clusters, J Phys Chem C, 114, 2010, 16018–16024.
  • M.M. Wu, H. Wang, Y.J. Ko, Q. Wang, Q. Sun, B. Kiran, A.K. Kandalam, K.H. Bowen, P. Jena, Manganese-based magnetic superhalogens, Angew Chem, 123, 2011, 2616–2620.
  • I. Anusiewicz, Electrophilic substituents as ligands in superhalogen anions, J Phys Chem A, 113, 2009, 6511–6516.
  • S. Smuczyńska, P. Skurski, Halogenoids as ligands in superhalogen anions, Inorg Chem, 48, 2009, 10231–10238.
  • S. Behera, D. Samanta, P. Jena, Nitrate superhalogens as building blocks of hypersalts, J Phys Chem A, 117, 2013, 5428–5434.
  • B.Z. Child, S. Giri, S. Gronert, P. Jena, Aromatic superhalogens, Chem Eur J, 20, 2014, 4736–4745.
  • P. Jena, Beyond the periodic table of elements: the role of superatoms, J Phys Chem Lett, 4, 2013, 1432–1442.
  • H. Zhao, J. Zhou, P. Jena, Stability of B12(CN)122−: Implications for lithium and magnesium ion batteries, Angew Chem, 128, 2016, 3768–3772.
  • B. Pathak, D. Samanta, R. Ahuja, P. Jena, Borane derivatives: a new class of super- and hyperhalogens, ChemPhysChem, 12, 2011, 2423–2428.
  • Q. Xue, M. Zhong, J. Zhou, P. Jena, Rational design of endohedral superhalogens without using metal cations and electron counting rules, J Phys Chem A, 126, 2022, 3536–3542.
  • S. Giri, B.Z. Child, P. Jena, Organic superhalogens, ChemPhysChem, 15, 2014, 2903–2908.
  • H. Banjade, H. Fang, P. Jena, Metallo-boranes: a class of unconventional superhalogens defying electron counting rules, Nanoscale, 14, 2022, 1767–1778.
  • A.K. Srivastava, A simple strategy to design polycyclic superhalogens, J Phys Chem A, 127, 2023, 4867–4872.
  • A.K. Srivastava, Boronyl-based polycyclic superhalogens, J Phys Chem A, 127, 2023, 10406–10411.
  • A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys Rev A, 38, 1988, 3098–3100.
  • C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys Rev B, 37, 1988, 785–789.
  • R. Ditchfield, W.J. Hehre, J.A. Pople, Self‐consistent molecular‐orbital methods. IX. An extended gaussian‐type basis for molecular‐orbital studies of organic molecules, J Chem Phys, 54, 1971, 724–728.
  • W.J. Hehre, R. Ditchfield, J.A. Pople, Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules, J Chem Phys, 56, 1972, 2257–2261.
  • M.J. Frisch et al., Gaussian 16, 2016, Wallingford CT, Gaussian Inc.
  • J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer, S. Nandi, G.B. Ellison, Atomic and molecular electron affinities: photoelectron experiments and theoretical computations, Chem Rev, 102, 2002, 231–282.
  • S. Liu, D. Lu, X. Wang, D. Ding, D. Kong, Z. Wang, Y. Zhao, Topology dictates function: controlled ROS production and mitochondria accumulation via curved carbon materials, J Mater Chem B, 5, 2017, 4918–4925.
  • K. Merkel, J. Greiner, F. Ortmann, Understanding the electronic pi-system of 2D covalent organic frameworks with Wannier functions, Sci Rep, 13, 2023, 1685.
  • P. Skurski, Superhalogens – Enormously Strong Electron Acceptors, Superatoms: Principles, Synthesis and Applications, Editors: P. Jena, Q. Sun, 2021, USA, Wiley.
  • C. Sikorska, Design and investigation of superatoms for redox applications: first-principles studies, Micromachines, 15, 2024, 78.
  • J. Zhang, P. Yang, Z.-R. Sun, X.-B. Wang, Covalently bound tetracoordinated organoborons as superhalogens: a combined negative ion photoelectron spectroscopy and theoretical study, J Phys Chem A, 118, 2014, 8074–8080.
  • S. Sinha, P. Jena, S. Giri, Functionalized nona-silicide [Si9R3] Zintl clusters: a new class of superhalogens, Phys Chem Chem Phys, 24, 2022, 21105–21111.
  • K.M. Griffing, J. Simons, Theoretical studies of molecular ions. Ionization potentials of CN− and BO−, J Chem Phys, 64, 1976, 3610–3614.
  • M. Watanabe, D. Ishimaru, N. Mizorogi, M. Kiuchi, J. Aihara, Thermodynamically and kinetically stable isomers of the C88 and C90 fullerenes, J Mol Struct-Theochem, 726, 2005, 11–16.
  • I. Świerszcz, I. Anusiewicz, Neutral and anionic superhalogen hydroxides, Chem Phys, 383, 2011, 93–100.
  • A.K. Srivastava, N. Misra, Gold oxyfluorides, Au(OF)n (n = 1–6): novel superhalogens with oxyfluoride ligands, New J Chem, 39, 2015, 9543–9549.
  • A.K. Kandalam, B. Kiran, P. Jena, S. Pietsch, G. Ganteför, Superhalogens beget superhalogens: a case study of (BO2)n oligomers, Phys Chem Chem Phys, 17, 2015, 26589–26593.
  • H. Wang, J. Li, J. Chen, Y. Bu, S.B. Cheng, Solvent field regulated superhalogen in pure and doped gold cluster anions, Chin Chem Lett, 34, 2023, 108222.
  • P. Jena, Superhalogens: a bridge between complex metal hydrides and Li ion batteries, J Phys Chem Lett, 6, 2015, 1119–1125.
  • L.P. Ding, L.T. Yang, P. Shao, Y.H. Tiandong, F.H. Zhang, C. Lu, Structures, mobilities, and electronic properties of functionalized silicene: superhalogen BO2 adsorption, Inorg Chem, 59, 2020, 5041–5049.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Abdurrahman Atalay 0000-0002-9018-7264

Gönderilme Tarihi 19 Ağustos 2025
Kabul Tarihi 1 Ekim 2025
Yayımlanma Tarihi 31 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 8 Sayı: 1

Kaynak Göster

APA Atalay, A. (2026). An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study. Turkish Journal of Analytical Chemistry, 8(1), 1-8. https://doi.org/10.51435/turkjac.1768491
AMA 1.Atalay A. An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study. TurkJAC. 2026;8(1):1-8. doi:10.51435/turkjac.1768491
Chicago Atalay, Abdurrahman. 2026. “An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study”. Turkish Journal of Analytical Chemistry 8 (1): 1-8. https://doi.org/10.51435/turkjac.1768491.
EndNote Atalay A (01 Ocak 2026) An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study. Turkish Journal of Analytical Chemistry 8 1 1–8.
IEEE [1]A. Atalay, “An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study”, TurkJAC, c. 8, sy 1, ss. 1–8, Oca. 2026, doi: 10.51435/turkjac.1768491.
ISNAD Atalay, Abdurrahman. “An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study”. Turkish Journal of Analytical Chemistry 8/1 (01 Ocak 2026): 1-8. https://doi.org/10.51435/turkjac.1768491.
JAMA 1.Atalay A. An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study. TurkJAC. 2026;8:1–8.
MLA Atalay, Abdurrahman. “An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study”. Turkish Journal of Analytical Chemistry, c. 8, sy 1, Ocak 2026, ss. 1-8, doi:10.51435/turkjac.1768491.
Vancouver 1.Atalay A. An efficient strategy for designing polycyclic superhalogens from corannulene: A DFT study. TurkJAC [Internet]. 01 Ocak 2026;8(1):1-8. Erişim adresi: https://izlik.org/JA67JS29AU
...