Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis and aggregation properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II)

Yıl 2020, , 75 - 80, 29.12.2020
https://doi.org/10.51435/turkjac.813227

Öz

The synthesis of original, symmetrical cobalt, manganese and zinc phthalocyanines including eight 2-(4-allyl-2-methoxyphenoxy)ethanol moieties were realized by cyclotetramerization of 4,5-bis(2-(4-allyl-2-methoxyphenoxy)ethoxy)phthalonitrile with suitable metal salts. Novel compounds having eugenol moieties were characterized by spectroscopic techniques such as FT-IR, UV-vis, 1H NMR, 13C NMR and mass spectra. Within the scope of this study, solutions peripheral octa-substituted cobalt (II), manganese (III) and zinc (II) phthalocyanine compounds were prepared in different solvents and concentrations. Then, UV-vis spectra were examined to investigate the effect of solvent and concentration on aggregation.

Kaynakça

  • [1] D.H. Templeton, M.S. Fischer, A. Zalkin and M. Calvin, Structure and chemistry of the porphyrins. The crystal and molecular structure of the monohydrated dipyridinated magnesium phthalocyanine complex, J. Am. Chem. Soc., 93 ,(11),1971, 2622-2628.
  • [2] J.R. Mooney, C.K. Choy, K. Knox and M. Kenney, Determination of the SiPc-O-SiMe bond angle common to the shift reagent compounds (CH3)3SiO(PcSiO)xSi(CH3)3(X= 1-5) by an induced shift technique and determination of the structure of PcSi[OSi(CH3)3]2 by x-ray crystallography, J. Am. Chem. Soc., 97, (11), 1975, 3033-3038.
  • [3] K. Ishii, Functional singlet oxygen generators based on phthalocyanines, Coord. Chem. Rev. 256, 2012, 1556–1568.
  • [4] P. Kluson, M. Drobek, A. Kalaji, S. Zarubova, J. Krysa, J. Rakusan, Singlet oxygen photogeneration efficiencies of a series of phthalocyanines in well-defined spectral regions, J. Photochem. Photobiol. A: Chem. 199, 2008, 267–273.
  • [5] B. Ertem, H. Yalazan, Ö. Güngör, G. Sarkı, M. Durmuş, E.T. Saka, H. Kantekin, Synthesis, structural characterization, and investigation on photopyhsical and photochemical features of new metallophthalocyanines, Journal of Luminescence, 204, 2018, 464-471.
  • [6] G. Guillaud, J. Simon, J. P. Metallophthalocyanines-Gas sensors, resistors and field effect transistors, Germain, Coord. Chem. Rev. 178-180, 1998, 1433–1484.
  • [7] K. R. Venugopala Reddy, J. Keshavayya, B. E. Kumara Swamy, M. N. K. Harish, H. R. Mallikarjuna, B.S. Sherigara, Spectral and electrochemical investigation of octanitrosubstituted metal phthalocyanines, Dyes Pigm. 80, 2009, 1–5.
  • [8] M. L. Rodriguez-Mendez and J. Antonio de Saja, Nanostructured thin films based on phthalocyanines: electrochromic displays and sensors, Journal of Porphyrins and Phthalocyanines, 13, 2009, 606–615.
  • [9] B. Meunier, Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage, Chem. Rev. 92, 1992, 1411–1456.
  • [10] H. Kantekin, E.T. Saka, B. Ertem, M.N. Mısır, H. Yalazan, G. Sarkı, New peripherally tetra-[trans-3,7-dimethyl-2,6-octadien-1-ol] substituted metallophthalocyanines: synthesis, characterization and catalytic activity studies on the oxidation of phenolic compounds, Journal of Coordination Chemistry, 71:1, 164-182.
  • [11] H. Yalazan, K. Tekintas, V. Serdaroğlu, E.T. Saka, N. Kahriman, H. Kantekin, Design, syntheses, spectroscopic, aggregation properties of novel peripheral octa-substituted zinc(II), magnesium(II) and lead(II) phthalocyanines and investigation of their photocatalytic properties on the photooxidation of 4-nitrophenol, Inorganic Chemistry Communications 118 (2020) 107998.
  • [12] F. Yılmaz, M. Özer, İ. Kani, Ö. Bekaroğlu, Catalytic Activity of a Thermoregulated, Phase-Separable Pd(II)-perfluoroalkylphthalocyanine Complex in an Organic/Fluorous Biphasic System: Hydrogenation of Olefins, Catal. Lett. 130, 2009, 642–647.
  • [13] E.T. Saka, G. Çelik, G. Sarkı, H. Kantekin, An efficient method for the oxidation of phenolic compounds using new Co(II) and Fe(II) phthalocyanines, Journal of inclusion phenomena and macrocyclic chemistry, 85, 2016, 161-168.
  • [14] E.T. Saka, G. Sarkı, H. Kantekin, Facile synthesis of highly active Co(II) and Fe(II) phthalocyanine catalysts for aerobic oxidation of phenolic compounds, Journal of Coordination Chemistry, 68, 2015, 1132-1141.
  • [15] Y.H. Gursel, B.F. Senkal, M. Kandaz, F. Yakuphanoglu, Synthesis and liquid crystal properties of phthalocyanine bearing a star polytetrahydrofuran moiety, Polyhedron 28 (2009) 1490–1496.
  • [16] H. Yalazan, B. Barut, B. Ertem, C.Ö. Yalçın, Y. Ünver, A. Özel, İ. Ömeroğlu, M. Durmuş, H. Kantekin, DNA interaction and anticancer properties of new peripheral phthalocyanines carrying tosylated 4-morpholinoaniline units, Polyhedron 177 (2020) 114319.
  • [17] H. Baş, B. Barut, Z. Biyiklioglu, A. Özel, Synthesis, DNA interaction, topoisomerase I, II inhibitory and cytotoxiceffects of water soluble silicon (IV) phthalocyanine and napthalocyaninesbearing 1-acetylpiperazine units, Dyes and Pigments 160 (2019) 136–144.
  • [18] S. Ünlü, M. N. Yaraşır, M. Kandaz, A. Koca, B. Salih, Synthesis, spectroscopy and electrochemical properties of highly soluble fluoro containing phthalocyanines, Polyhedron, 27, 2008, 2805–2810.
  • [19] G. R. Mallavarapu, S. Ramesh, R. S. Chandrasekhara, B. R. Rajeswara Rao, P. N. Kaul and A. K. Bhattacharya, Investigation of the essential oil of cinnamon leaf grown at Bangalore and Hyderabad, J. Flavour and Fragrance, 10, 1995, 239-242.
  • [20] X. Dao-cheng and L. Wan-cheng, Synthesis, Characterization and Properties of 1,11,15,25 tetrahydroxy-4,8,18,22-bis(bridging butanedioic acid) phthalocyanine Cooper, Synth. Met. 209, 2015, 549-554.
  • [21] R. Bayrak, Synthesis, investigation of photophysical and photochemical properties of metal free and metallophthalocyanines that have triazole groups on peripheral environment, PhD Thesis, Karadeniz Technical University, Institute of Science, 2013.
  • [22] K. Y. Law, Organic photoconductive materials: recent trends and developments. Chemical Reviews, 93(1), 1993, 449-486.
  • [23] R. D. George, Snow, A. W., Shirk, J. S., Barger, W. “The alpha substitution effect on phthalocyanine aggregation”. Journal of Porphyrins and Phthalocyanines, 2 (1), 1998, 1-7.
  • [24] A. W. Snow, Properties and Materrials Phthalocyanines, The Porphyrin Handbook, 17, 2003, 129.
  • [25] H. Kantekin, G. Sarkı, A. Koca, O. Bekircan, A. Aktaş, R.Z.U. Kobak, M.B. Sağlam, Synthesis, structural characterizations, and electrochemical and spectroelectrochemical properties of novel peripherally octasubstituted metallophthalocyanines, Journol of Orgametallic Chemistry, 789-890, 2015, 53-62.
Yıl 2020, , 75 - 80, 29.12.2020
https://doi.org/10.51435/turkjac.813227

Öz

Destekleyen Kurum

Karadeniz Teknik Üniversitesi

Kaynakça

  • [1] D.H. Templeton, M.S. Fischer, A. Zalkin and M. Calvin, Structure and chemistry of the porphyrins. The crystal and molecular structure of the monohydrated dipyridinated magnesium phthalocyanine complex, J. Am. Chem. Soc., 93 ,(11),1971, 2622-2628.
  • [2] J.R. Mooney, C.K. Choy, K. Knox and M. Kenney, Determination of the SiPc-O-SiMe bond angle common to the shift reagent compounds (CH3)3SiO(PcSiO)xSi(CH3)3(X= 1-5) by an induced shift technique and determination of the structure of PcSi[OSi(CH3)3]2 by x-ray crystallography, J. Am. Chem. Soc., 97, (11), 1975, 3033-3038.
  • [3] K. Ishii, Functional singlet oxygen generators based on phthalocyanines, Coord. Chem. Rev. 256, 2012, 1556–1568.
  • [4] P. Kluson, M. Drobek, A. Kalaji, S. Zarubova, J. Krysa, J. Rakusan, Singlet oxygen photogeneration efficiencies of a series of phthalocyanines in well-defined spectral regions, J. Photochem. Photobiol. A: Chem. 199, 2008, 267–273.
  • [5] B. Ertem, H. Yalazan, Ö. Güngör, G. Sarkı, M. Durmuş, E.T. Saka, H. Kantekin, Synthesis, structural characterization, and investigation on photopyhsical and photochemical features of new metallophthalocyanines, Journal of Luminescence, 204, 2018, 464-471.
  • [6] G. Guillaud, J. Simon, J. P. Metallophthalocyanines-Gas sensors, resistors and field effect transistors, Germain, Coord. Chem. Rev. 178-180, 1998, 1433–1484.
  • [7] K. R. Venugopala Reddy, J. Keshavayya, B. E. Kumara Swamy, M. N. K. Harish, H. R. Mallikarjuna, B.S. Sherigara, Spectral and electrochemical investigation of octanitrosubstituted metal phthalocyanines, Dyes Pigm. 80, 2009, 1–5.
  • [8] M. L. Rodriguez-Mendez and J. Antonio de Saja, Nanostructured thin films based on phthalocyanines: electrochromic displays and sensors, Journal of Porphyrins and Phthalocyanines, 13, 2009, 606–615.
  • [9] B. Meunier, Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage, Chem. Rev. 92, 1992, 1411–1456.
  • [10] H. Kantekin, E.T. Saka, B. Ertem, M.N. Mısır, H. Yalazan, G. Sarkı, New peripherally tetra-[trans-3,7-dimethyl-2,6-octadien-1-ol] substituted metallophthalocyanines: synthesis, characterization and catalytic activity studies on the oxidation of phenolic compounds, Journal of Coordination Chemistry, 71:1, 164-182.
  • [11] H. Yalazan, K. Tekintas, V. Serdaroğlu, E.T. Saka, N. Kahriman, H. Kantekin, Design, syntheses, spectroscopic, aggregation properties of novel peripheral octa-substituted zinc(II), magnesium(II) and lead(II) phthalocyanines and investigation of their photocatalytic properties on the photooxidation of 4-nitrophenol, Inorganic Chemistry Communications 118 (2020) 107998.
  • [12] F. Yılmaz, M. Özer, İ. Kani, Ö. Bekaroğlu, Catalytic Activity of a Thermoregulated, Phase-Separable Pd(II)-perfluoroalkylphthalocyanine Complex in an Organic/Fluorous Biphasic System: Hydrogenation of Olefins, Catal. Lett. 130, 2009, 642–647.
  • [13] E.T. Saka, G. Çelik, G. Sarkı, H. Kantekin, An efficient method for the oxidation of phenolic compounds using new Co(II) and Fe(II) phthalocyanines, Journal of inclusion phenomena and macrocyclic chemistry, 85, 2016, 161-168.
  • [14] E.T. Saka, G. Sarkı, H. Kantekin, Facile synthesis of highly active Co(II) and Fe(II) phthalocyanine catalysts for aerobic oxidation of phenolic compounds, Journal of Coordination Chemistry, 68, 2015, 1132-1141.
  • [15] Y.H. Gursel, B.F. Senkal, M. Kandaz, F. Yakuphanoglu, Synthesis and liquid crystal properties of phthalocyanine bearing a star polytetrahydrofuran moiety, Polyhedron 28 (2009) 1490–1496.
  • [16] H. Yalazan, B. Barut, B. Ertem, C.Ö. Yalçın, Y. Ünver, A. Özel, İ. Ömeroğlu, M. Durmuş, H. Kantekin, DNA interaction and anticancer properties of new peripheral phthalocyanines carrying tosylated 4-morpholinoaniline units, Polyhedron 177 (2020) 114319.
  • [17] H. Baş, B. Barut, Z. Biyiklioglu, A. Özel, Synthesis, DNA interaction, topoisomerase I, II inhibitory and cytotoxiceffects of water soluble silicon (IV) phthalocyanine and napthalocyaninesbearing 1-acetylpiperazine units, Dyes and Pigments 160 (2019) 136–144.
  • [18] S. Ünlü, M. N. Yaraşır, M. Kandaz, A. Koca, B. Salih, Synthesis, spectroscopy and electrochemical properties of highly soluble fluoro containing phthalocyanines, Polyhedron, 27, 2008, 2805–2810.
  • [19] G. R. Mallavarapu, S. Ramesh, R. S. Chandrasekhara, B. R. Rajeswara Rao, P. N. Kaul and A. K. Bhattacharya, Investigation of the essential oil of cinnamon leaf grown at Bangalore and Hyderabad, J. Flavour and Fragrance, 10, 1995, 239-242.
  • [20] X. Dao-cheng and L. Wan-cheng, Synthesis, Characterization and Properties of 1,11,15,25 tetrahydroxy-4,8,18,22-bis(bridging butanedioic acid) phthalocyanine Cooper, Synth. Met. 209, 2015, 549-554.
  • [21] R. Bayrak, Synthesis, investigation of photophysical and photochemical properties of metal free and metallophthalocyanines that have triazole groups on peripheral environment, PhD Thesis, Karadeniz Technical University, Institute of Science, 2013.
  • [22] K. Y. Law, Organic photoconductive materials: recent trends and developments. Chemical Reviews, 93(1), 1993, 449-486.
  • [23] R. D. George, Snow, A. W., Shirk, J. S., Barger, W. “The alpha substitution effect on phthalocyanine aggregation”. Journal of Porphyrins and Phthalocyanines, 2 (1), 1998, 1-7.
  • [24] A. W. Snow, Properties and Materrials Phthalocyanines, The Porphyrin Handbook, 17, 2003, 129.
  • [25] H. Kantekin, G. Sarkı, A. Koca, O. Bekircan, A. Aktaş, R.Z.U. Kobak, M.B. Sağlam, Synthesis, structural characterizations, and electrochemical and spectroelectrochemical properties of novel peripherally octasubstituted metallophthalocyanines, Journol of Orgametallic Chemistry, 789-890, 2015, 53-62.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya
Bölüm Research Articles
Yazarlar

Gülpınar Sarkı Bu kişi benim 0000-0001-6415-5616

Halise Yalazan 0000-0003-1234-2721

Halit Kantekin 0000-0003-2625-2815

Yayımlanma Tarihi 29 Aralık 2020
Gönderilme Tarihi 20 Ekim 2020
Kabul Tarihi 3 Kasım 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sarkı, G., Yalazan, H., & Kantekin, H. (2020). Synthesis and aggregation properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II). Turkish Journal of Analytical Chemistry, 2(2), 75-80. https://doi.org/10.51435/turkjac.813227
AMA Sarkı G, Yalazan H, Kantekin H. Synthesis and aggregation properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II). TurkJAC. Aralık 2020;2(2):75-80. doi:10.51435/turkjac.813227
Chicago Sarkı, Gülpınar, Halise Yalazan, ve Halit Kantekin. “Synthesis and Aggregation Properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-Allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II)”. Turkish Journal of Analytical Chemistry 2, sy. 2 (Aralık 2020): 75-80. https://doi.org/10.51435/turkjac.813227.
EndNote Sarkı G, Yalazan H, Kantekin H (01 Aralık 2020) Synthesis and aggregation properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II). Turkish Journal of Analytical Chemistry 2 2 75–80.
IEEE G. Sarkı, H. Yalazan, ve H. Kantekin, “Synthesis and aggregation properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II)”, TurkJAC, c. 2, sy. 2, ss. 75–80, 2020, doi: 10.51435/turkjac.813227.
ISNAD Sarkı, Gülpınar vd. “Synthesis and Aggregation Properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-Allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II)”. Turkish Journal of Analytical Chemistry 2/2 (Aralık 2020), 75-80. https://doi.org/10.51435/turkjac.813227.
JAMA Sarkı G, Yalazan H, Kantekin H. Synthesis and aggregation properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II). TurkJAC. 2020;2:75–80.
MLA Sarkı, Gülpınar vd. “Synthesis and Aggregation Properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-Allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II)”. Turkish Journal of Analytical Chemistry, c. 2, sy. 2, 2020, ss. 75-80, doi:10.51435/turkjac.813227.
Vancouver Sarkı G, Yalazan H, Kantekin H. Synthesis and aggregation properties of 2,9,16,23–tetrakis(chloro)-3,10,17,24–tetrakis[2-(4-allyl-2methoxyphenoxy)ethoxy]phthalocyaninato cobalt(II), manganese(III), zinc(II). TurkJAC. 2020;2(2):75-80.



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/