Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 1 Sayı: 1, - , 11.12.2019

Öz

Kaynakça

  • [1] Spietelun, A., Marcinkowski, L., Guardia, M., Namieśnik, J. 2014. ‘’Green aspects, developments and perspectives of liquid phase microextraction techniques’’ Talanta 119 34–45. [2] Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F., Berijani, S. 2006. ‘’Determination of organic compounds in water using dispersive liquid-liquid microextraction’’ J. Chromatogr. A 1116 1–9. [3] Herrera-Herrera, A.V., Asensio-Ramos, M., Hernàndez-Borges, J., RodriguezDelgado, M.A. 2010. ‘’Dispersive liquid-liquid microextraction for determination of organic analytes’’ Trends Anal. Chem. 29 (7) 728–751.[4] Kadish, K.M., Smith, K.M., Guilard, R. 2010. Handbook of porphyrin science. Singapore: World Scientific Publishing. [5] Donzello, M.P., Ercolani, C., Novakova, V., Zimcik, P., Stuzhin, P.A. 2016. ‘’Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural information’’ Coord. Chem. Rev. 309 107-179. [6] M.P. Donzello, D. Vittori, E. Viola, L.H. Zeng, Y. Cui, K.M. Kadish, 2015. ‘’Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings 14: UV-visible spectral and electrochemical behavior of homo/heterobinuclear neutral and hexacationic macrocycles’’ J. Porphyr. Phthalocyanines 17 896-904. [7] M. Kucinska, P. Skupin-Mrugalska, W. Szczolko, L. Sobotta, M. Sciepura, E. Tykarska, 2015. ‘’Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy’’ J. Med. Chem 58 2240-2255. [8] J.T.F. ƒLau, P-C. Lo, X-J. Jiang, Q. Wang, D.K.P. Ng, 2014. ‘’Synthesis and Photodynamic Effect of New Highly Photostable Decacationically Armed [60]- and [70]Fullerene Decaiodide Monoadducts To Target Pathogenic Bacteria and Cancer Cells’’ J. Med. Chem. 57 4088-4097. [9] M.P. Donzello, E. Viola, C. Ercolani, Z. Fu, D. Futur, K.M. Kadish, 2012. ‘’Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 12. New heteropentanuclear complexes carrying four exocyclic cis-platin-like functionalities as potential bimodal (PDT/cis-platin) anticancer agents’’ Inorg. Chem. 51 12548-12559.[10] A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, 2010. ‘’Dye-sensitized solar cells’’ Chem. Rev. 110 6595-65663. [11] M-E Ragoussi, M. Ince, T. Torres, 2013. ‘’Recent Advances in Phthalocyanine Based Sensitizers for Dye Sensitized Solar Cells’’ Eur. J. Org. Chem. 29 6475-6489. [12] L. Lochman, J. Svec, J. Roh, K. Kirakci, K. Lang, P. Zimcik, 2016. ‘’Azaphthalocyanines: Red Fluorescent Probes for Cations’’ Chem. Eur. J. 22, 2417-2426. [13] V. Novakova, M. Laskova, H. Vavrickova, P. Zimcik, 2015. ‘’Phenol Substituted Tetrapyrazinoporphyrazines: pH Dependent Fluorescence in Basic Media’’ Chem. Eur. J. 21 14382-14392. [14] I.V. Nesterova, C.A. Bennett, S.S. Erdem, R.P. Hammer, P.L. Deininger, S.A. Soper, 2011. ‘’Near-IR single fluorophore quenching system based on phthalocyanine (Pc) aggregation and its application for monitoring inhibitor/activator action on a therapeutic target: L1-EN’’ Analyst 136 1103-1105. [15] P. Zimcik, V. Novakova, K. Kopecky, M. Miletin, R.Z. Uslu Kobak, E. Svandrlikova, 2012. ‘’Magnesium azaphthalocyanines: an emerging family of excellent red-emitting fluorophores’’ Inorg. Chem. 51 4215-4223. [16] D. Wohrle, G. Schnurpfeil, S.G. Makarov, A. Kazarin, O.N. Suvorova, 2012. ‘’ Practical Applications of Phthalocyanines – from Dyes and Pigments to Materials for Optical, Electronic and Photo-electronic Devices’’ Macroheterocycles 5 191-202.[17] P. Zimcik, A. Malkova, L. Hruba, M. Miletin, V. Novakova, 2017. ‘’Bulky 2,6-diphenylphenylsulfanyl substituents efficiently inhibit aggregation in phthalocyanines and tetrapyrazinoporphyrazines and control their photophysical and electrochemical properties’’ Dyes and Pigments 136 715-723.[18] T.W. Lin, S.D. Huang, 2001. ‘’Direct and simultaneous determination of copper, chromium, aluminum and manganese in urine with a multielement graphite furnace atomic absorption spectrometer’’ Anal. Chem. 73 (17) 4319-4325.[19] C.N. Sawyer, P.L. McCarty, G.F. Parkin, Chemistry for Environmental Engineering, fourth ed., McGraw-Hill, New York, 1996, p. 634. [20] L. Feng, Y. Zhang, L. Wen, Z. Shen, Y. Guan, 2011. ‘’Colorimetric determination of copper (II) ions by filtration on sol-gel membrane doped with diphenylcarbazide’’ Talanta 84 (3) 913-917. [21] C. Pfeiffer, R. Mailloux, 1987. ‘’Excess copper as a factor in human diseases’’ J. Orthomol. Med. 2 (3) 171-182. [22] Yamini, Y., Hassan, J., Karbasi, M.H. 2004. ‘’Solid phase extraction of copper and cupron on octadecyl silica cartridge and its determination with atomic absorption spectrometry’’ Microchim. Acta 148 (3-4) 305-309. [23] Alkan, D., Kara, M. 2002. ‘’Preconcentration and separation of copper(II) with solvent extraction using N,N0 -bis(2-hydroxy-5- bromo-benzyl) 1,2 diaminopropane, Microchem. J. 71 29-39. [24] Tobiasz, A., Walas, S., Soto Hernandes, A., Mrowiec, H. 2012. ‘’Application of multiwall carbon nanotubes impregnated with 5- dodecylsalicylaldoxime for on-line copper preconcentration and determination in water samples by flame atomic absorption spectrometry’’ Talanta 96 89-95. [25] Gao, Y., Wu, P., Li, W., Xuan, Y., Hou, X. 2010. ‘’Simultaneous and selective preconcentration of trace Cu and Ag by one-step displacement cloud point extraction for FAAS determination’’ Talanta 81 586-590. [26] Alver, E., Demirci, A., Ozcimder, M. 2012. ‘’Microextraction methods’’ Sigma J. Eng. Nat. Sci. 30 75-90. [27] Kandhro, G., Soylak, M., Kazı, T.G., Yılmaz, E. 2014. ‘’Enrichment of copper as 1-(2-pyridylazo)-2-naphthol complex by the combination of dispersive liquid-liquid micro-extraction/flame atomic absorption spectrometry’’ J. AOAC Int. 97 205-210. [28] Stanisz, E., Zgola-Grzeskowiak, A. 2013. ‘’In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper in water samples by electrothermal atomic absorption spectrometry’’ Talanta 115 178-183. [29] Baghdadi, M., Shemirani, F. 2008 ‘’Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids’’ Anal. Chim. Acta 613 56-63.[30] Çağlar, Y., Saka, E.T., Alp, H., Kantekin, H., Ocak, Ü., Ocak, M. 2016. ‘’A Simple Spectrofluorimetric Method Based on Quenching of a Nickel(II)-Phthalocyanine Complex to Determine Iron (III)’’ Journal of Fluorescence 26 1381-1389.

A novel silicone phthalocyanine for the preconcentration and spectrophotometric determination of copper by ionic liquid-based dispersive liquid-liquid microextraction

Yıl 2019, Cilt: 1 Sayı: 1, - , 11.12.2019

Öz

Dispersive
liquid-liquid microextraction (DLLME) has become a very popular environmentally
benign sample preparation technique, due to its simplicity, speed of operation
and low consumption of solvent and reagent. It has attracted much interest from
scientists working in separation science, and much improvement has been made since
its introduction in 2006. This work reports the development of a new simple ionic
liquid based dispersive liquid-liquid microextraction (IL-DLLME) method for
spectrophotometric copper determination. First, the copper was complexed with a
novel silicone phthalocyanine and than the complex was extracted into
1-heptyl-3-methylimidazolium
hexafluorophosphate dissolving in acetone

in the presence of sodium dodecyl sulphate (SDS) as the anti-sticking agent.
After centrifuging for 2 min at 3000 rpm, the extracting phase was diluted to
250 µL with acetone for spectrophtometric detection at 340 nm. Some experimental
conditions that influence the procedure were optimized. The pH and complexing
reagent concentration are 4.0 and 4.6x10-6 molL-1,
respectively. The method is linear in the range from 0.03 to 100
µg/mL
with a correlation coefficient (R2) of 0.9973. The limit of
detection (LOD) of method is 0.017
µg/mL. The relative
standard deviation is 1.7% at
45 µg/mL Cu2+ (n=6).  The enrichment factor for the method was
calculated as 210.

Kaynakça

  • [1] Spietelun, A., Marcinkowski, L., Guardia, M., Namieśnik, J. 2014. ‘’Green aspects, developments and perspectives of liquid phase microextraction techniques’’ Talanta 119 34–45. [2] Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F., Berijani, S. 2006. ‘’Determination of organic compounds in water using dispersive liquid-liquid microextraction’’ J. Chromatogr. A 1116 1–9. [3] Herrera-Herrera, A.V., Asensio-Ramos, M., Hernàndez-Borges, J., RodriguezDelgado, M.A. 2010. ‘’Dispersive liquid-liquid microextraction for determination of organic analytes’’ Trends Anal. Chem. 29 (7) 728–751.[4] Kadish, K.M., Smith, K.M., Guilard, R. 2010. Handbook of porphyrin science. Singapore: World Scientific Publishing. [5] Donzello, M.P., Ercolani, C., Novakova, V., Zimcik, P., Stuzhin, P.A. 2016. ‘’Tetrapyrazinoporphyrazines and their metal derivatives. Part I: Synthesis and basic structural information’’ Coord. Chem. Rev. 309 107-179. [6] M.P. Donzello, D. Vittori, E. Viola, L.H. Zeng, Y. Cui, K.M. Kadish, 2015. ‘’Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings 14: UV-visible spectral and electrochemical behavior of homo/heterobinuclear neutral and hexacationic macrocycles’’ J. Porphyr. Phthalocyanines 17 896-904. [7] M. Kucinska, P. Skupin-Mrugalska, W. Szczolko, L. Sobotta, M. Sciepura, E. Tykarska, 2015. ‘’Phthalocyanine derivatives possessing 2-(morpholin-4-yl)ethoxy groups as potential agents for photodynamic therapy’’ J. Med. Chem 58 2240-2255. [8] J.T.F. ƒLau, P-C. Lo, X-J. Jiang, Q. Wang, D.K.P. Ng, 2014. ‘’Synthesis and Photodynamic Effect of New Highly Photostable Decacationically Armed [60]- and [70]Fullerene Decaiodide Monoadducts To Target Pathogenic Bacteria and Cancer Cells’’ J. Med. Chem. 57 4088-4097. [9] M.P. Donzello, E. Viola, C. Ercolani, Z. Fu, D. Futur, K.M. Kadish, 2012. ‘’Tetra-2,3-pyrazinoporphyrazines with externally appended pyridine rings. 12. New heteropentanuclear complexes carrying four exocyclic cis-platin-like functionalities as potential bimodal (PDT/cis-platin) anticancer agents’’ Inorg. Chem. 51 12548-12559.[10] A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, 2010. ‘’Dye-sensitized solar cells’’ Chem. Rev. 110 6595-65663. [11] M-E Ragoussi, M. Ince, T. Torres, 2013. ‘’Recent Advances in Phthalocyanine Based Sensitizers for Dye Sensitized Solar Cells’’ Eur. J. Org. Chem. 29 6475-6489. [12] L. Lochman, J. Svec, J. Roh, K. Kirakci, K. Lang, P. Zimcik, 2016. ‘’Azaphthalocyanines: Red Fluorescent Probes for Cations’’ Chem. Eur. J. 22, 2417-2426. [13] V. Novakova, M. Laskova, H. Vavrickova, P. Zimcik, 2015. ‘’Phenol Substituted Tetrapyrazinoporphyrazines: pH Dependent Fluorescence in Basic Media’’ Chem. Eur. J. 21 14382-14392. [14] I.V. Nesterova, C.A. Bennett, S.S. Erdem, R.P. Hammer, P.L. Deininger, S.A. Soper, 2011. ‘’Near-IR single fluorophore quenching system based on phthalocyanine (Pc) aggregation and its application for monitoring inhibitor/activator action on a therapeutic target: L1-EN’’ Analyst 136 1103-1105. [15] P. Zimcik, V. Novakova, K. Kopecky, M. Miletin, R.Z. Uslu Kobak, E. Svandrlikova, 2012. ‘’Magnesium azaphthalocyanines: an emerging family of excellent red-emitting fluorophores’’ Inorg. Chem. 51 4215-4223. [16] D. Wohrle, G. Schnurpfeil, S.G. Makarov, A. Kazarin, O.N. Suvorova, 2012. ‘’ Practical Applications of Phthalocyanines – from Dyes and Pigments to Materials for Optical, Electronic and Photo-electronic Devices’’ Macroheterocycles 5 191-202.[17] P. Zimcik, A. Malkova, L. Hruba, M. Miletin, V. Novakova, 2017. ‘’Bulky 2,6-diphenylphenylsulfanyl substituents efficiently inhibit aggregation in phthalocyanines and tetrapyrazinoporphyrazines and control their photophysical and electrochemical properties’’ Dyes and Pigments 136 715-723.[18] T.W. Lin, S.D. Huang, 2001. ‘’Direct and simultaneous determination of copper, chromium, aluminum and manganese in urine with a multielement graphite furnace atomic absorption spectrometer’’ Anal. Chem. 73 (17) 4319-4325.[19] C.N. Sawyer, P.L. McCarty, G.F. Parkin, Chemistry for Environmental Engineering, fourth ed., McGraw-Hill, New York, 1996, p. 634. [20] L. Feng, Y. Zhang, L. Wen, Z. Shen, Y. Guan, 2011. ‘’Colorimetric determination of copper (II) ions by filtration on sol-gel membrane doped with diphenylcarbazide’’ Talanta 84 (3) 913-917. [21] C. Pfeiffer, R. Mailloux, 1987. ‘’Excess copper as a factor in human diseases’’ J. Orthomol. Med. 2 (3) 171-182. [22] Yamini, Y., Hassan, J., Karbasi, M.H. 2004. ‘’Solid phase extraction of copper and cupron on octadecyl silica cartridge and its determination with atomic absorption spectrometry’’ Microchim. Acta 148 (3-4) 305-309. [23] Alkan, D., Kara, M. 2002. ‘’Preconcentration and separation of copper(II) with solvent extraction using N,N0 -bis(2-hydroxy-5- bromo-benzyl) 1,2 diaminopropane, Microchem. J. 71 29-39. [24] Tobiasz, A., Walas, S., Soto Hernandes, A., Mrowiec, H. 2012. ‘’Application of multiwall carbon nanotubes impregnated with 5- dodecylsalicylaldoxime for on-line copper preconcentration and determination in water samples by flame atomic absorption spectrometry’’ Talanta 96 89-95. [25] Gao, Y., Wu, P., Li, W., Xuan, Y., Hou, X. 2010. ‘’Simultaneous and selective preconcentration of trace Cu and Ag by one-step displacement cloud point extraction for FAAS determination’’ Talanta 81 586-590. [26] Alver, E., Demirci, A., Ozcimder, M. 2012. ‘’Microextraction methods’’ Sigma J. Eng. Nat. Sci. 30 75-90. [27] Kandhro, G., Soylak, M., Kazı, T.G., Yılmaz, E. 2014. ‘’Enrichment of copper as 1-(2-pyridylazo)-2-naphthol complex by the combination of dispersive liquid-liquid micro-extraction/flame atomic absorption spectrometry’’ J. AOAC Int. 97 205-210. [28] Stanisz, E., Zgola-Grzeskowiak, A. 2013. ‘’In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper in water samples by electrothermal atomic absorption spectrometry’’ Talanta 115 178-183. [29] Baghdadi, M., Shemirani, F. 2008 ‘’Cold-induced aggregation microextraction: a novel sample preparation technique based on ionic liquids’’ Anal. Chim. Acta 613 56-63.[30] Çağlar, Y., Saka, E.T., Alp, H., Kantekin, H., Ocak, Ü., Ocak, M. 2016. ‘’A Simple Spectrofluorimetric Method Based on Quenching of a Nickel(II)-Phthalocyanine Complex to Determine Iron (III)’’ Journal of Fluorescence 26 1381-1389.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya
Bölüm Research Articles
Yazarlar

Yasemin Çağlar 0000-0002-8437-5373

Ece Tugba Saka

Yayımlanma Tarihi 11 Aralık 2019
Gönderilme Tarihi 18 Kasım 2019
Kabul Tarihi 2 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 1 Sayı: 1

Kaynak Göster

APA Çağlar, Y., & Saka, E. T. (2019). A novel silicone phthalocyanine for the preconcentration and spectrophotometric determination of copper by ionic liquid-based dispersive liquid-liquid microextraction. Turkish Journal of Analytical Chemistry, 1(1).
AMA Çağlar Y, Saka ET. A novel silicone phthalocyanine for the preconcentration and spectrophotometric determination of copper by ionic liquid-based dispersive liquid-liquid microextraction. TurkJAC. Aralık 2019;1(1).
Chicago Çağlar, Yasemin, ve Ece Tugba Saka. “A Novel Silicone Phthalocyanine for the Preconcentration and Spectrophotometric Determination of Copper by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction”. Turkish Journal of Analytical Chemistry 1, sy. 1 (Aralık 2019).
EndNote Çağlar Y, Saka ET (01 Aralık 2019) A novel silicone phthalocyanine for the preconcentration and spectrophotometric determination of copper by ionic liquid-based dispersive liquid-liquid microextraction. Turkish Journal of Analytical Chemistry 1 1
IEEE Y. Çağlar ve E. T. Saka, “A novel silicone phthalocyanine for the preconcentration and spectrophotometric determination of copper by ionic liquid-based dispersive liquid-liquid microextraction”, TurkJAC, c. 1, sy. 1, 2019.
ISNAD Çağlar, Yasemin - Saka, Ece Tugba. “A Novel Silicone Phthalocyanine for the Preconcentration and Spectrophotometric Determination of Copper by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction”. Turkish Journal of Analytical Chemistry 1/1 (Aralık 2019).
JAMA Çağlar Y, Saka ET. A novel silicone phthalocyanine for the preconcentration and spectrophotometric determination of copper by ionic liquid-based dispersive liquid-liquid microextraction. TurkJAC. 2019;1.
MLA Çağlar, Yasemin ve Ece Tugba Saka. “A Novel Silicone Phthalocyanine for the Preconcentration and Spectrophotometric Determination of Copper by Ionic Liquid-Based Dispersive Liquid-Liquid Microextraction”. Turkish Journal of Analytical Chemistry, c. 1, sy. 1, 2019.
Vancouver Çağlar Y, Saka ET. A novel silicone phthalocyanine for the preconcentration and spectrophotometric determination of copper by ionic liquid-based dispersive liquid-liquid microextraction. TurkJAC. 2019;1(1).



6th International Environmental Chemistry Congress (EnviroChem)

https://www.envirochem.org.tr/