Araştırma Makalesi
BibTex RIS Kaynak Göster

Fast pyrolysis of fig leaves: influence of pyrolysis parameters and characterization of bio-oil

Yıl 2022, Cilt: 4 Sayı: 2, 80 - 87, 29.12.2022
https://doi.org/10.51435/turkjac.1143144

Öz

Liquid yields achieved by fast pyrolysis of ligno-cellulosic biomass can be used in the production of chemical raw materials or as an energy source. Pyrolysis product yields generally depend on the type of biomass, temperature, retention time, heating rate, sweeping gas flow rate and particle size. In this study, fast pyrolysis of fig leaves selected as biomass was carried out in a fixed bed pyrolysis reactor. Fig leaves used in fast pyrolysis experiments in this study as an agricultural by-product can be obtained in large quantities from Turkey. In the experiments, the effect of temperature, entraining gas flow rate, and particle size on pyrolysis product yields were investigated. The experiments were carried out at 400, 500, 600, 700 °C, four different particle sizes. The highest liquid product yield was obtained at 600 C, while the heating rate was 200 cm3/min and the particle size was <0.150 mm. According to the test results, the most effective parameter on liquid product yield is temperature. Based on the results of this analysis the H/C molar ratio (1.71) and the high calorific value (14.25 MJ/kg) indicate that FL can be used the source of raw materials in obtaining liquid fuel. Instrumental techniques such as FT-IR, SEM-EDS, TG/DTG and GC-MS were used for the characterization of bio-oil. The bio-oil contains alkenes, aldehydes, carboxylic acids and aromatic structures such as indole derivative as well as alkanes. The heating value of the bio-oil is 32.16 MJ/kg which is close to those of petroleum fractions.

Teşekkür

Authors would like to thank the Turkish Academy of Sciences for financial funding. Authors would thank the KTU due to the experimental set-up and instrumentation facilities.

Kaynakça

  • 1. S. Keleş, T. Kar, M. Akgun, K. Kaygusuz. Catalytic fast pyrolysis of hazelnut cupula: Characterization of bio-oil, Energy Source Part A, 39, 2017, 2216-2225.
  • 2. C. Acar, I. Dinçer. A Review on Clean Energy Solutions for Better Sustainability, International Journal of Energy Research, 39, 2015, 585-606.
  • 3. A. J. Kirkpatrick, L. S. Bennear LS. Promoting Clean Energy Investment: An Empirical Analysis of Property Assessed Clean Energy, Journal of Environmental Economics and Management, 68, 2014, 357–375.
  • 4. X. Ying, W. Tiejun, M. Longlong, C. Guanyi. Upgrading of fast pyrolysis liquid fuel from biomass over Ru/γ-Al2O3 catalyst, Energy Conversion and Management, 55, 2012, 172-177.
  • 5. Q. Sohaib, M. Habib, S. F. A. Shah, U. Habib, S. Ullah. Fast pyrolysis of locally available green waste at different residence time and temperatures, Energy Source Part A, 39, 2017, 1639–46.
  • 6. S. Papari, K. Hawboldt, P. Fransham. Study of selective condensation for woody biomass pyrolysis oil vapours, Fuel, 245, 2019, 233-239.
  • 7. Z. Luo , S. Wang, Y. Liao, J. Zhou, Y. K. Gu. Research on biomass fast pyrolysis for liquid fuel, Biomass and Bioenergy, 26, 2005, 455-462.
  • 8. P. S. Marathe,R. J. M. Westerhof, S. R. A. Kersten. Fast pyrolysis of lignins with different molecular weight: Experiments and modeling, Applied Energy 236, 2019, 1125-1137.
  • 9. A. V. Bridgwater. Review of fast pyrolysis of biomass and product upgrading, Biomass and Bioenergy, 38, 2012, 68-94.
  • 10. F. Guo, X. Li, Y. Liu, K. Peng,C. Guo, Z. Rao. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts, Energy Conversion and Management, 167, 2018, 81-90.
  • 11. G. W. Huber, S. Iborra, C. Corma. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chemical Reviews, 106, 2006,4044–4098.
  • 12. S. Hansen, A. Mirkouei, L. A. Diaz. A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels, Renewable Sustainable and Energy Review, 118, 2020, 109548. 13. M. Bertero, J. R. Garcia, M. Falco, U. Sedran. Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis, Renewable Energy, 132, 2019, 11-18.
  • 14. S. U. Chang. Rice Husk and Its Pretreatments for Bio-oil Production via Fast Pyrolysis: a Review, Bioenergy Research, 13, 2020, 23-42.
  • 15. L. D. Ingram, M. Mohan, P. Bricka, P. Steele, D. Strobel, D. Crocker, B. Mitchell, J. Mohammad, K. Cantrell, C. U. Pittman. Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils, Energy Fuels, 22, 2008, 614–625.
  • 16. I. Nemoto, N. Kouno, E. Sato. Method for treating bio-oil, US Pat Applic, 2008 20080178521. 17. J. P. Diebold JP CPL Press, A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils in Fast Pyrolysis of Biomass: A Handbook, vol. 2 (ed. A.V. Bridgwater), CPL Press, Newbury, 2002, pp. 243–292.
  • 18. C. Wang, H. Ding, Y. Zhang. Analysis of property variation and stability on the aging of bio-oil from fractional condensation, Renewable Energy, 148, 2020, 720-728.
  • 19. J. P. Diebold, S. Czernik. Additives to lower and stabilize the viscosity of pyrolysis oils during storage, Energy Fuels, 11, 1997, 1081–1091. 20. Y. Mei, M. Chai, C. Shen, B. Liu, R. Liu. Effect of methanol addition on properties and aging reaction mechanism of bio-oil during storage, Fuel, 244, 2019, 499-507. 21. A. Mlanka-Medrala, A. Magdziarz, M. Gajek, K. Nowińska, W. Nowak. Alkali metals association in biomass and their impact on ash melting behavior, Fuel, 261, 2020, 116421.
  • 22. M. Zhao, M. Z. Memon, G. Ji, X. Yang, A. K. Vuppaladadiyam, Y. Song, A. Raheem,J. Li, W. Wang, H. Zhou. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production, Renewable Energy, 148, 2020, 168-175.
  • 23. M. Broumand, S. Albert-Green, S. Yun, Z. Hong, M. Thomson. Spray combustion of fast pyrolysis bio-oils: Applications, challenges, and potential solutions, Progress in Energy and Combustion Science,79, 2020, 100834.
  • 24. A. Oasmaa, M. Kytö, K. Sipila Pyrolysis oil combustion tests in an industrial boiler, in Progress in Thermochemical Biomass Conversion (ed. A.V. Bridgwater), Blackwell Science, Oxford, pp. 2001, 1468–1481.
  • 25. D. Chiaramonti, A. Oasmaa, Y. Solantausta. Power generation using fast pyrolysis liquids from biomass, Renewable and Sustainable Energy Review, 11, 2007, 1056–1086.
  • 26. D. Y. Hopa, N. Yılmaz, O. Alagoz, M. Dilek, A. Helvacı, U. Durupınar. Pyrolysis of poppy capsule pulp for bio-oil production, Waste Management and Research, 34, 2016, 1316– 1321.
  • 27. G. V. C. Peacocke. Transport handling and storage of fast pyrolysis liquids, in Fast Pyrolysis of Biomass: A Handbook, vol. 2 (ed A.V. Bridgwater), CPL Press, Newbury, 2002, pp. 293–338.
  • 28. J. Wang, S. You, Z. Lu. Life cycle assessment of bio-based levoglucosan production from cotton straw through fast pyrolysis. Bioresource Technology, 307, 2020, 123179. 29. T. Kar, S. Keles. Fast pyrolysis of chestnut cupulae: yields and characterization of the bio-oil, Energy Exploration and Exploitation, 31, 2013, 867-878.
  • 30. T. Bridgwater. Review Biomass for Energy. Journal of the Science of Food and Agriculture 86, 2006,1755-1768.
  • 31. T. Kar, S. Keleş. Characterisation of bio-oil and its sub-fractions from catalytic fast pyrolysis of biomass mixture, Waste Managent and Research 37, 2019, 674–685.
  • 32. J. Lehto, A. A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass, Applied Energy, 116,2014 178-190.
  • 33. D. Al-shahrani, A S. Love, D. Salas-de la Cruz. The Role of Reduced Graphene Oxide toward the Self-Assembly of Lignin-Based Bio composites Fabricated from Ionic Liquids, International Journal of Molecular Sciences,19, 2018, 1-13.
Yıl 2022, Cilt: 4 Sayı: 2, 80 - 87, 29.12.2022
https://doi.org/10.51435/turkjac.1143144

Öz

Kaynakça

  • 1. S. Keleş, T. Kar, M. Akgun, K. Kaygusuz. Catalytic fast pyrolysis of hazelnut cupula: Characterization of bio-oil, Energy Source Part A, 39, 2017, 2216-2225.
  • 2. C. Acar, I. Dinçer. A Review on Clean Energy Solutions for Better Sustainability, International Journal of Energy Research, 39, 2015, 585-606.
  • 3. A. J. Kirkpatrick, L. S. Bennear LS. Promoting Clean Energy Investment: An Empirical Analysis of Property Assessed Clean Energy, Journal of Environmental Economics and Management, 68, 2014, 357–375.
  • 4. X. Ying, W. Tiejun, M. Longlong, C. Guanyi. Upgrading of fast pyrolysis liquid fuel from biomass over Ru/γ-Al2O3 catalyst, Energy Conversion and Management, 55, 2012, 172-177.
  • 5. Q. Sohaib, M. Habib, S. F. A. Shah, U. Habib, S. Ullah. Fast pyrolysis of locally available green waste at different residence time and temperatures, Energy Source Part A, 39, 2017, 1639–46.
  • 6. S. Papari, K. Hawboldt, P. Fransham. Study of selective condensation for woody biomass pyrolysis oil vapours, Fuel, 245, 2019, 233-239.
  • 7. Z. Luo , S. Wang, Y. Liao, J. Zhou, Y. K. Gu. Research on biomass fast pyrolysis for liquid fuel, Biomass and Bioenergy, 26, 2005, 455-462.
  • 8. P. S. Marathe,R. J. M. Westerhof, S. R. A. Kersten. Fast pyrolysis of lignins with different molecular weight: Experiments and modeling, Applied Energy 236, 2019, 1125-1137.
  • 9. A. V. Bridgwater. Review of fast pyrolysis of biomass and product upgrading, Biomass and Bioenergy, 38, 2012, 68-94.
  • 10. F. Guo, X. Li, Y. Liu, K. Peng,C. Guo, Z. Rao. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts, Energy Conversion and Management, 167, 2018, 81-90.
  • 11. G. W. Huber, S. Iborra, C. Corma. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering, Chemical Reviews, 106, 2006,4044–4098.
  • 12. S. Hansen, A. Mirkouei, L. A. Diaz. A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels, Renewable Sustainable and Energy Review, 118, 2020, 109548. 13. M. Bertero, J. R. Garcia, M. Falco, U. Sedran. Equilibrium FCC catalysts to improve liquid products from biomass pyrolysis, Renewable Energy, 132, 2019, 11-18.
  • 14. S. U. Chang. Rice Husk and Its Pretreatments for Bio-oil Production via Fast Pyrolysis: a Review, Bioenergy Research, 13, 2020, 23-42.
  • 15. L. D. Ingram, M. Mohan, P. Bricka, P. Steele, D. Strobel, D. Crocker, B. Mitchell, J. Mohammad, K. Cantrell, C. U. Pittman. Pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils, Energy Fuels, 22, 2008, 614–625.
  • 16. I. Nemoto, N. Kouno, E. Sato. Method for treating bio-oil, US Pat Applic, 2008 20080178521. 17. J. P. Diebold JP CPL Press, A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils in Fast Pyrolysis of Biomass: A Handbook, vol. 2 (ed. A.V. Bridgwater), CPL Press, Newbury, 2002, pp. 243–292.
  • 18. C. Wang, H. Ding, Y. Zhang. Analysis of property variation and stability on the aging of bio-oil from fractional condensation, Renewable Energy, 148, 2020, 720-728.
  • 19. J. P. Diebold, S. Czernik. Additives to lower and stabilize the viscosity of pyrolysis oils during storage, Energy Fuels, 11, 1997, 1081–1091. 20. Y. Mei, M. Chai, C. Shen, B. Liu, R. Liu. Effect of methanol addition on properties and aging reaction mechanism of bio-oil during storage, Fuel, 244, 2019, 499-507. 21. A. Mlanka-Medrala, A. Magdziarz, M. Gajek, K. Nowińska, W. Nowak. Alkali metals association in biomass and their impact on ash melting behavior, Fuel, 261, 2020, 116421.
  • 22. M. Zhao, M. Z. Memon, G. Ji, X. Yang, A. K. Vuppaladadiyam, Y. Song, A. Raheem,J. Li, W. Wang, H. Zhou. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production, Renewable Energy, 148, 2020, 168-175.
  • 23. M. Broumand, S. Albert-Green, S. Yun, Z. Hong, M. Thomson. Spray combustion of fast pyrolysis bio-oils: Applications, challenges, and potential solutions, Progress in Energy and Combustion Science,79, 2020, 100834.
  • 24. A. Oasmaa, M. Kytö, K. Sipila Pyrolysis oil combustion tests in an industrial boiler, in Progress in Thermochemical Biomass Conversion (ed. A.V. Bridgwater), Blackwell Science, Oxford, pp. 2001, 1468–1481.
  • 25. D. Chiaramonti, A. Oasmaa, Y. Solantausta. Power generation using fast pyrolysis liquids from biomass, Renewable and Sustainable Energy Review, 11, 2007, 1056–1086.
  • 26. D. Y. Hopa, N. Yılmaz, O. Alagoz, M. Dilek, A. Helvacı, U. Durupınar. Pyrolysis of poppy capsule pulp for bio-oil production, Waste Management and Research, 34, 2016, 1316– 1321.
  • 27. G. V. C. Peacocke. Transport handling and storage of fast pyrolysis liquids, in Fast Pyrolysis of Biomass: A Handbook, vol. 2 (ed A.V. Bridgwater), CPL Press, Newbury, 2002, pp. 293–338.
  • 28. J. Wang, S. You, Z. Lu. Life cycle assessment of bio-based levoglucosan production from cotton straw through fast pyrolysis. Bioresource Technology, 307, 2020, 123179. 29. T. Kar, S. Keles. Fast pyrolysis of chestnut cupulae: yields and characterization of the bio-oil, Energy Exploration and Exploitation, 31, 2013, 867-878.
  • 30. T. Bridgwater. Review Biomass for Energy. Journal of the Science of Food and Agriculture 86, 2006,1755-1768.
  • 31. T. Kar, S. Keleş. Characterisation of bio-oil and its sub-fractions from catalytic fast pyrolysis of biomass mixture, Waste Managent and Research 37, 2019, 674–685.
  • 32. J. Lehto, A. A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti. Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass, Applied Energy, 116,2014 178-190.
  • 33. D. Al-shahrani, A S. Love, D. Salas-de la Cruz. The Role of Reduced Graphene Oxide toward the Self-Assembly of Lignin-Based Bio composites Fabricated from Ionic Liquids, International Journal of Molecular Sciences,19, 2018, 1-13.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya
Bölüm Research Articles
Yazarlar

Turgay Kar 0000-0002-5543-3394

Sedat Keleş 0000-0003-3293-5241

Zafer Emir 0000-0002-9718-1551

Kamil Kaygusuz 0000-0001-8364-2794

Erken Görünüm Tarihi 23 Aralık 2022
Yayımlanma Tarihi 29 Aralık 2022
Gönderilme Tarihi 11 Temmuz 2022
Kabul Tarihi 18 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 4 Sayı: 2

Kaynak Göster

APA Kar, T., Keleş, S., Emir, Z., Kaygusuz, K. (2022). Fast pyrolysis of fig leaves: influence of pyrolysis parameters and characterization of bio-oil. Turkish Journal of Analytical Chemistry, 4(2), 80-87. https://doi.org/10.51435/turkjac.1143144
AMA Kar T, Keleş S, Emir Z, Kaygusuz K. Fast pyrolysis of fig leaves: influence of pyrolysis parameters and characterization of bio-oil. TurkJAC. Aralık 2022;4(2):80-87. doi:10.51435/turkjac.1143144
Chicago Kar, Turgay, Sedat Keleş, Zafer Emir, ve Kamil Kaygusuz. “Fast Pyrolysis of Fig Leaves: Influence of Pyrolysis Parameters and Characterization of Bio-Oil”. Turkish Journal of Analytical Chemistry 4, sy. 2 (Aralık 2022): 80-87. https://doi.org/10.51435/turkjac.1143144.
EndNote Kar T, Keleş S, Emir Z, Kaygusuz K (01 Aralık 2022) Fast pyrolysis of fig leaves: influence of pyrolysis parameters and characterization of bio-oil. Turkish Journal of Analytical Chemistry 4 2 80–87.
IEEE T. Kar, S. Keleş, Z. Emir, ve K. Kaygusuz, “Fast pyrolysis of fig leaves: influence of pyrolysis parameters and characterization of bio-oil”, TurkJAC, c. 4, sy. 2, ss. 80–87, 2022, doi: 10.51435/turkjac.1143144.
ISNAD Kar, Turgay vd. “Fast Pyrolysis of Fig Leaves: Influence of Pyrolysis Parameters and Characterization of Bio-Oil”. Turkish Journal of Analytical Chemistry 4/2 (Aralık 2022), 80-87. https://doi.org/10.51435/turkjac.1143144.
JAMA Kar T, Keleş S, Emir Z, Kaygusuz K. Fast pyrolysis of fig leaves: influence of pyrolysis parameters and characterization of bio-oil. TurkJAC. 2022;4:80–87.
MLA Kar, Turgay vd. “Fast Pyrolysis of Fig Leaves: Influence of Pyrolysis Parameters and Characterization of Bio-Oil”. Turkish Journal of Analytical Chemistry, c. 4, sy. 2, 2022, ss. 80-87, doi:10.51435/turkjac.1143144.
Vancouver Kar T, Keleş S, Emir Z, Kaygusuz K. Fast pyrolysis of fig leaves: influence of pyrolysis parameters and characterization of bio-oil. TurkJAC. 2022;4(2):80-7.