Araştırma Makalesi
BibTex RIS Kaynak Göster

Catalytic co-pyrolysis of PET/PP plastics and olive pomace biomass with marble sludge catalyst

Yıl 2025, Cilt: 7 Sayı: 1, 33 - 45, 31.01.2025
https://doi.org/10.51435/turkjac.1609960

Öz

Sustainable and efficient waste management requires involvement of symbiotic solutions to various types of wastes, and so to achieve circular economy. Through this motivation, in this study, combined thermochemical conversion (pyrolysis) of plastics, biomass and marble processing effluents physicochemical treatment sludge (K1) were studied. In this combination, plastics were petroleum-based synthetic aromatic (PET) and aliphatic (PP) organics, while olive pomace-OP was natural agricultural residue. K1 was mineral product, which was first introduced in the literature as pyrolysis catalyst by the authors. In the study, co-pyrolysis of polymers and biomass was catalyzed by mineral waste containing CaCO3. The effect of plastic type and pyrolyzed material mixture ratio on pyrolysis fractions were investigated. Moreover, material recovery potential from pyrolysis fractions were discussed. In catalytic co-pyrolysis, by increasing the plastic ratio in the mixture, the pyrolytic liquid and oligomer fraction increased while the solid (char) and gas fraction decreased. For 70%PP+15%OP+15%K1 mixture, liquid product was dominant, whereas with 60%PET+20%OP+20%K1 much more pyrolytic gas fraction produced. The thermal degradation of char products did not exceed 2-3% up to 600°C and this stability continues up to approximately 700°C reveals the potential of the char to be used in alternative areas as a material with high thermal resistance. The catalytic co-pyrolysis liquid products contain alkanes, alkenes, acids, phenols, benzene, aldehydes, esters, alcohols, ketones. Benzene, acid and alcohol groups were dominant in liquids, while alkane, alkene and alkyne groups were dominant in gases.

Proje Numarası

This study was financially supported by the Bilateral Joint Research Project between TUBITAK (Turkey) [CAYDAG-118Y475] and JSPS (Japan) [JPJSBP12019942].

Kaynakça

  • D.T.Sekyere, J. Zhang,Y. Chen, Y. Huang, M. Wang, J. Wang, N. Niwamanya, A.Baridye, Y. Tian, Production of light olefins and aromatics via catalytic co-pyrolysis of biomass and plastic, Fuel, 333, 2023,126339.
  • N.Sánchez-Ávila, A. Cardarelli, M. Carmona-Cabello, M.P. Dorado, S. Pinzi, M. Barbanera, Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis, Renew Energ, 230, 2024,120880.
  • Z.Murti, D. Dharmawan, S. Siswanto, D. Soedjati, A. Barkah, P. Rahardjo, Review of the circular economy of plastic waste in various countries and potential applications in Indonesia, IOP Conf. Ser. Earth Environ. Sci, 2022,
  • R. Aguado, A. Escámez, F.Jurado, D. Vera, Experimental assessment of a pilot-scale gasification plant fueled with olive pomace pellets for combined power, heat and biochar production. Fuel, 344, 2023, 128127.
  • M.S.Qureshi, A. Oasmaa, H. Pihkola, I. Deviatkin, A. Tenhunen, J. Mannila, H.Minkkinen, M. Pohjakallio, J. Laine-Ylijoki, Pyrolysis of plastic waste: Opportunities and challenges, J Anal Appl Pyrol, 152, 2020, 104804.
  • A.L.K.Chee, B.L.F. Chin, S.M.X. Goh, Y.H. Chai, A.C.M. Loy, K.W. Cheah, C.L. Yiin, S.S.M. Lock, Thermo-catalytic co-pyrolysis of palm kernel shell and plastic waste mixtures using bifunctional HZSM-5/limestone catalyst: Kinetic and thermodynamic insights, J Energy Inst, 107, 2023, 101194.
  • J. Choudhary, B. Alawa, S. Chakma, Insight into the kinetics and thermodynamic analyses of co-pyrolysis using advanced isoconversional method and thermogravimetric analysis: a multi-model study of optimization for enhanced fuel properties, Process Saf Environ 173, 2023,
  • S.Y.Oh, Y.D. Seo, Polymer/biomass-derived biochar for use as a sorbent and electron transfer mediator in environmental applications, Bioresour Technol, 218, 2016, 77–83.
  • F.Abnisa, W. M. A. W. Daud, A review on co-pyrolysis of biomass: an optional technique to obtain a high- grade pyrolysis oil. Energ Convers Manage, 87, 2014, 71–85.
  • Z.Wang, K.G. Burra, T. Lei, A.K. Gupta, Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review, Prog Energ Combust, 84, 2021,100899.
  • A.C.Johansson, L.Sandström, O.G. Öhrman, H. Jilvero, Co-pyrolysis of woody biomass and plastic waste in both analytical and pilot scale, J Anal Appl Pyrol, 134, 2018, 102–113.
  • K. Yang, K. Wu, F. Li, L. Jia, S. Wang, H. Zhang, Investigation on the co-pyrolysis of bamboo sawdust and low-density polyethylene via online photoionization mass spectrometry and machine learning methods, Fuel Process Technol 240, 2023,
  • G. Özsin, A.E. Pütün, A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics, J Clean Prod, 205, 2018, 1127–1138.
  • F.A.Al-Balushi, K.G. Burra, Y. Chai, M. Wang, Co-pyrolysis of waste tyre and pine bark: Study of reaction kinetics and mechanisms. Biomass Bioenerg, 16T8, 2023,106654.
  • J. Chattopadhyay, T.S. Pathak, R. Srivastava, A.C. Singh, Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis, Energy, 103, 2016, 513–521.
  • A.C. Dyer, M.A. Nahil, P.T. Williams, Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil, J Energy Inst, 97, 2021, 27–36.
  • K.G. Burra, A.K. Gupta, Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes, Appl Energ, 220, 2018, 408–418.
  • P.Lu, Q. Huang, A.T. Bourtsalas, Y. Chi, J. Yan, Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride, Fuel, 230, 2018, 359–367.
  • M.V.Navarro, J.M, L´opez, A.Veses, M.S. Call´en, T.García, Kinetic study for the copyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model, Energy, 165, 2018, 731–42.
  • J.R.Kim, J.H. Yoon, D.W. Park, Catalytic recycling of the mixture of polypropylene and polystyrene, Polym Degrad Stab, 76(1), 2002, 61–67.
  • S. Kumagai, I. Hasegawa, G. Grause, T. Kameda, T. Yoshioka, Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2, J Anal Appl Pyrol, 113, 2015, 584–590.
  • S. Gopinath, P.K. Devan, K. Pitchandi, Production of pyrolytic oil from ULDP plastics using silica-alumina catalyst and used as fuel for DI diesel engine, RSC Adv, 10(61), 2020, 37266–37279.
  • H. Hassan, J.K. Lim, B.H. Hameed, Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil, Bioresource Technol, 221, 2016, 645–655.
  • X. Zhang, H. Lei, S. Chen, J. Wu, Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem, 18(15), 2016, 4145–4169.
  • B. Muneer, M. Zeeshan, S.Qaisar, M.Razzaq, H.Iftikhar, Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality, J Clean Prod, 237, 2019, 117762.
  • F. Mo, H. Ullah, N. Zada, A.A. Shahab, Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products, Energies, 16, 2023, 5403.
  • V.Onen, A. Ozgan, G. Goktepeli, M. Kalem, G. Ahmetli, E. Yel, Marble processing effluent treatment sludge in waste PET pyrolysis as catalyst-I: pyrolysis product yields and the char characteristics, Int J Environ Sci Technol, 20(4), 2023,3965-3986.
  • G. Ahmetli, A. Ozgan, V. Onen, M. Kalem, G. Goktepeli, E. Yel, Marble processing effluent treatment sludge in waste poly (ethylene terephthalate) pyrolysis as catalyst–II: recovery from pyrolytic fluids, Int J Environ Sci Technol, 21(7), 2024, 6021–6042.
  • G. Goktepeli, A. Ozgan, V. Onen, G. Ahmetli, M. Kalem, E. Yel, Alternative green application areas for olive pomace catalytic pyrolysis biochar obtained via marble sludge catalyst. Biodegradation, 35, 2024, 907–938.
  • E.Yel (Director), Development of upgrade recycle system by environmental-benign functional materials using waste materials (marble sludge and olive oil wastes) in Turkey, Tübitak-JSPS Joint Research Programs, Bilateral JRP Final Report, 2022.
  • D. Duan, H. Lei, Y. Wang, R. Ruan, Y. Liu, L. Ding, Y.Zhang, L. Liu, Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis, J Clean Prod, 231, 2019, 331–340.
  • X. Chen, Y. Chen, H. Yang, W. Chen, X. Wang, H. Chen, Fast pyrolysis of cotton stalk biomass using calcium oxide, Bioresource Technol, 233, 2017, 15–20.
  • G.Grause, S.Matsumoto, T.Kameda, T.Yoshioka, Pyrolysis of Mixed Plastics in a Fluidized Bed of Hard Burnt Lime, Ind. Eng. Chem. Res. 50(9), 2011, 5459–5466.
  • S. Kumagai, I. Hasegawa, G. Grause, T. Kameda, T. Yoshioka, Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2, J Anal Appl Pyrol 113(2015), 584–590.
  • H.Gulab, K.Hussain, S. Malik, Z. Hussain, & Z. Shah. Catalytic co‐pyrolysis of E Crassipes biomaѕѕ and polyethylene using waste Fe and CaCO3 catalysts. Int J Energy Res, 40(7), 2016, 940–951.
  • T. A.Vo, H. V. Ly, I. Hwang, H. T. Hwang, J.Kim, & S. S. Kim, Enhancement of biofuel quality via conventional and catalytic co-pyrolysis of bamboo with polystyrene in a bubbling fluidized bed reactor: Coupled experiments and artificial neural network modeling. Fuel, 346, 2023, 128403.
  • Y.Tang, J.Dong, Y. Zhao, G. Li, Y.Chi, E.Weiss-Hortala, ... & C.Ye, Hydrogen-rich and clean fuel gas production from Co-pyrolysis of biomass and plastic blends with CaO additive. ACS omega, 7(41), 2022, 36468–36478.
  • A. Alcazar-Ruiz, F. Dorado, L. Sanchez-Silva, Fast pyrolysis of agroindustrial wastes blends: Hydrocarbon production enhancement, J Anal Appl Pyrol, 157, 2021, 105242.
  • F.Abnisa, P.A. Alaba, Recovery of liquid fuel from fossil-based solid wastes via pyrolysis technique: A review, J Environ Chemical Eng, 9(6), 2021, 106593.
  • B. Saha, P.K. Reddy, A.C.K. Chowlu, A.K. Ghoshal, Model-free kinetics analysis of nanocrystalline HZSM-5 catalyzed pyrolysis of polypropylene (PP), Thermochim Acta, 468(1-2),2008, 94–100.
  • C. Covarrubias, F. Gracia, H. Palza, Catalytic degradation of polyethylene using nanosized ZSM-2 zeolite, Appl Catal A-Gen, 384(1-2), 2010, 186–191.
  • K. Al bkoor Alrawashdeh, K. Slopiecka, A.A. Alshorman, P. Bartocci, F. Fantozzi, Pyrolytic degradation of olive waste residue (OWR) by TGA: thermal decomposition behavior and kinetic study, J Energ Power Eng, 11(8). 2017, 497–510.
  • J.Shah, M.R. Jan, Z. Hussain, Catalytic pyrolysis of low-density polyethylene with lead sulfide into fuel oil, Polym Degrad Stab, 87(2), 2005,329–333.
  • A.S. Al-Rahbi, J.A. Onwudili, P.T. Williams, Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char, Bioresource Technol, 204, 2016, 71–79.
  • D.Q. Fu, X.H. Li, W.Y. Li, J. Feng, Catalytic upgrading of coal pyrolysis products over bio-char, Fuel Process Technol, 176, 2018, 240–248.
  • K.Sun, N.J. Themelis, A.T. Bourtsalas, Q. Huang, Selective production of aromatics from waste plastic pyrolysis by using sewage sludge derived char catalyst, J Clean Prod, 268, 2020, 122038.
  • H.Weldekidan, V. Strezov, T. Kan, R. Kumar, J. He, G. Town, Solar assisted catalytic pyrolysis of chicken-litter waste with in-situ and ex-situ loading of CaO and char, Fuel, 2019, 246, 408–416.

Mermer çamuru katalizörü ile PET/PP plastiklerin ve zeytin posası biyokütlesinin katalitik ko-pirolizi

Yıl 2025, Cilt: 7 Sayı: 1, 33 - 45, 31.01.2025
https://doi.org/10.51435/turkjac.1609960

Öz

Sürdürülebilir ve etkili atık yönetimi, çeşitli atık türlerine simbiyotik çözümlerin dahil edilmesini ve böylece dairesel ekonomiye ulaşılmasını gerektirir. Bu motivasyonla, bu çalışmada, plastiklerin, biyokütlenin ve mermer işleme atıklarının fizikokimyasal arıtma çamurunun (K1) kombine termokimyasal dönüşümü (pirolizi) incelenmiştir. Bu kombinasyonda, plastikler petrol bazlı sentetik aromatik (PET) ve alifatik (PP) organikler iken, zeytin posası-OP doğal tarımsal kalıntıdır. K1, literatüre ilk olarak yazarlar tarafından piroliz katalizörü olarak tanıtılan mineral üründür. Çalışmada, polimerlerin ve biyokütlenin eş pirolizi, CaCO3 içeren mineral atık tarafından katalize edilmiştir. Plastik türünün ve pirolize edilmiş malzeme karışım oranının piroliz fraksiyonları üzerindeki etkisi araştırılmıştır. Ayrıca, piroliz fraksiyonlarından malzeme geri kazanım potansiyeli tartışılmıştır. Katalitik ko-pirolizde, karışımdaki plastik oranının artırılmasıyla pirolitik sıvı ve oligomer fraksiyonu artarken katı (char) ve gaz fraksiyonu azaldı. %70PP+%15OP+%15K1 karışımı için sıvı ürün baskındı, %60PET+%20OP+%20K1 ile ise çok daha fazla pirolitik gaz fraksiyonu üretildi. Char ürünlerinin termal bozunması 600°C'ye kadar %2-3'ü geçmedi ve bu kararlılık yaklaşık 700°C'ye kadar devam etti, char'ın yüksek termal dirence sahip bir malzeme olarak alternatif alanlarda kullanılma potansiyelini ortaya koydu. Katalitik ko-piroliz sıvı ürünleri alkanlar, alkenler, asitler, fenoller, benzen, aldehitler, esterler, alkoller, ketonlar içerir. Sıvılarda benzen, asit ve alkol grupları baskınken, gazlarda alkan, alken ve alkin grupları baskındı.

Proje Numarası

This study was financially supported by the Bilateral Joint Research Project between TUBITAK (Turkey) [CAYDAG-118Y475] and JSPS (Japan) [JPJSBP12019942].

Kaynakça

  • D.T.Sekyere, J. Zhang,Y. Chen, Y. Huang, M. Wang, J. Wang, N. Niwamanya, A.Baridye, Y. Tian, Production of light olefins and aromatics via catalytic co-pyrolysis of biomass and plastic, Fuel, 333, 2023,126339.
  • N.Sánchez-Ávila, A. Cardarelli, M. Carmona-Cabello, M.P. Dorado, S. Pinzi, M. Barbanera, Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis, Renew Energ, 230, 2024,120880.
  • Z.Murti, D. Dharmawan, S. Siswanto, D. Soedjati, A. Barkah, P. Rahardjo, Review of the circular economy of plastic waste in various countries and potential applications in Indonesia, IOP Conf. Ser. Earth Environ. Sci, 2022,
  • R. Aguado, A. Escámez, F.Jurado, D. Vera, Experimental assessment of a pilot-scale gasification plant fueled with olive pomace pellets for combined power, heat and biochar production. Fuel, 344, 2023, 128127.
  • M.S.Qureshi, A. Oasmaa, H. Pihkola, I. Deviatkin, A. Tenhunen, J. Mannila, H.Minkkinen, M. Pohjakallio, J. Laine-Ylijoki, Pyrolysis of plastic waste: Opportunities and challenges, J Anal Appl Pyrol, 152, 2020, 104804.
  • A.L.K.Chee, B.L.F. Chin, S.M.X. Goh, Y.H. Chai, A.C.M. Loy, K.W. Cheah, C.L. Yiin, S.S.M. Lock, Thermo-catalytic co-pyrolysis of palm kernel shell and plastic waste mixtures using bifunctional HZSM-5/limestone catalyst: Kinetic and thermodynamic insights, J Energy Inst, 107, 2023, 101194.
  • J. Choudhary, B. Alawa, S. Chakma, Insight into the kinetics and thermodynamic analyses of co-pyrolysis using advanced isoconversional method and thermogravimetric analysis: a multi-model study of optimization for enhanced fuel properties, Process Saf Environ 173, 2023,
  • S.Y.Oh, Y.D. Seo, Polymer/biomass-derived biochar for use as a sorbent and electron transfer mediator in environmental applications, Bioresour Technol, 218, 2016, 77–83.
  • F.Abnisa, W. M. A. W. Daud, A review on co-pyrolysis of biomass: an optional technique to obtain a high- grade pyrolysis oil. Energ Convers Manage, 87, 2014, 71–85.
  • Z.Wang, K.G. Burra, T. Lei, A.K. Gupta, Co-pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals-A review, Prog Energ Combust, 84, 2021,100899.
  • A.C.Johansson, L.Sandström, O.G. Öhrman, H. Jilvero, Co-pyrolysis of woody biomass and plastic waste in both analytical and pilot scale, J Anal Appl Pyrol, 134, 2018, 102–113.
  • K. Yang, K. Wu, F. Li, L. Jia, S. Wang, H. Zhang, Investigation on the co-pyrolysis of bamboo sawdust and low-density polyethylene via online photoionization mass spectrometry and machine learning methods, Fuel Process Technol 240, 2023,
  • G. Özsin, A.E. Pütün, A comparative study on co-pyrolysis of lignocellulosic biomass with polyethylene terephthalate, polystyrene, and polyvinyl chloride: Synergistic effects and product characteristics, J Clean Prod, 205, 2018, 1127–1138.
  • F.A.Al-Balushi, K.G. Burra, Y. Chai, M. Wang, Co-pyrolysis of waste tyre and pine bark: Study of reaction kinetics and mechanisms. Biomass Bioenerg, 16T8, 2023,106654.
  • J. Chattopadhyay, T.S. Pathak, R. Srivastava, A.C. Singh, Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis, Energy, 103, 2016, 513–521.
  • A.C. Dyer, M.A. Nahil, P.T. Williams, Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil, J Energy Inst, 97, 2021, 27–36.
  • K.G. Burra, A.K. Gupta, Kinetics of synergistic effects in co-pyrolysis of biomass with plastic wastes, Appl Energ, 220, 2018, 408–418.
  • P.Lu, Q. Huang, A.T. Bourtsalas, Y. Chi, J. Yan, Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride, Fuel, 230, 2018, 359–367.
  • M.V.Navarro, J.M, L´opez, A.Veses, M.S. Call´en, T.García, Kinetic study for the copyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model, Energy, 165, 2018, 731–42.
  • J.R.Kim, J.H. Yoon, D.W. Park, Catalytic recycling of the mixture of polypropylene and polystyrene, Polym Degrad Stab, 76(1), 2002, 61–67.
  • S. Kumagai, I. Hasegawa, G. Grause, T. Kameda, T. Yoshioka, Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2, J Anal Appl Pyrol, 113, 2015, 584–590.
  • S. Gopinath, P.K. Devan, K. Pitchandi, Production of pyrolytic oil from ULDP plastics using silica-alumina catalyst and used as fuel for DI diesel engine, RSC Adv, 10(61), 2020, 37266–37279.
  • H. Hassan, J.K. Lim, B.H. Hameed, Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil, Bioresource Technol, 221, 2016, 645–655.
  • X. Zhang, H. Lei, S. Chen, J. Wu, Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem, 18(15), 2016, 4145–4169.
  • B. Muneer, M. Zeeshan, S.Qaisar, M.Razzaq, H.Iftikhar, Influence of in-situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality, J Clean Prod, 237, 2019, 117762.
  • F. Mo, H. Ullah, N. Zada, A.A. Shahab, Review on Catalytic Co-Pyrolysis of Biomass and Plastics Waste as a Thermochemical Conversion to Produce Valuable Products, Energies, 16, 2023, 5403.
  • V.Onen, A. Ozgan, G. Goktepeli, M. Kalem, G. Ahmetli, E. Yel, Marble processing effluent treatment sludge in waste PET pyrolysis as catalyst-I: pyrolysis product yields and the char characteristics, Int J Environ Sci Technol, 20(4), 2023,3965-3986.
  • G. Ahmetli, A. Ozgan, V. Onen, M. Kalem, G. Goktepeli, E. Yel, Marble processing effluent treatment sludge in waste poly (ethylene terephthalate) pyrolysis as catalyst–II: recovery from pyrolytic fluids, Int J Environ Sci Technol, 21(7), 2024, 6021–6042.
  • G. Goktepeli, A. Ozgan, V. Onen, G. Ahmetli, M. Kalem, E. Yel, Alternative green application areas for olive pomace catalytic pyrolysis biochar obtained via marble sludge catalyst. Biodegradation, 35, 2024, 907–938.
  • E.Yel (Director), Development of upgrade recycle system by environmental-benign functional materials using waste materials (marble sludge and olive oil wastes) in Turkey, Tübitak-JSPS Joint Research Programs, Bilateral JRP Final Report, 2022.
  • D. Duan, H. Lei, Y. Wang, R. Ruan, Y. Liu, L. Ding, Y.Zhang, L. Liu, Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis, J Clean Prod, 231, 2019, 331–340.
  • X. Chen, Y. Chen, H. Yang, W. Chen, X. Wang, H. Chen, Fast pyrolysis of cotton stalk biomass using calcium oxide, Bioresource Technol, 233, 2017, 15–20.
  • G.Grause, S.Matsumoto, T.Kameda, T.Yoshioka, Pyrolysis of Mixed Plastics in a Fluidized Bed of Hard Burnt Lime, Ind. Eng. Chem. Res. 50(9), 2011, 5459–5466.
  • S. Kumagai, I. Hasegawa, G. Grause, T. Kameda, T. Yoshioka, Thermal decomposition of individual and mixed plastics in the presence of CaO or Ca(OH)2, J Anal Appl Pyrol 113(2015), 584–590.
  • H.Gulab, K.Hussain, S. Malik, Z. Hussain, & Z. Shah. Catalytic co‐pyrolysis of E Crassipes biomaѕѕ and polyethylene using waste Fe and CaCO3 catalysts. Int J Energy Res, 40(7), 2016, 940–951.
  • T. A.Vo, H. V. Ly, I. Hwang, H. T. Hwang, J.Kim, & S. S. Kim, Enhancement of biofuel quality via conventional and catalytic co-pyrolysis of bamboo with polystyrene in a bubbling fluidized bed reactor: Coupled experiments and artificial neural network modeling. Fuel, 346, 2023, 128403.
  • Y.Tang, J.Dong, Y. Zhao, G. Li, Y.Chi, E.Weiss-Hortala, ... & C.Ye, Hydrogen-rich and clean fuel gas production from Co-pyrolysis of biomass and plastic blends with CaO additive. ACS omega, 7(41), 2022, 36468–36478.
  • A. Alcazar-Ruiz, F. Dorado, L. Sanchez-Silva, Fast pyrolysis of agroindustrial wastes blends: Hydrocarbon production enhancement, J Anal Appl Pyrol, 157, 2021, 105242.
  • F.Abnisa, P.A. Alaba, Recovery of liquid fuel from fossil-based solid wastes via pyrolysis technique: A review, J Environ Chemical Eng, 9(6), 2021, 106593.
  • B. Saha, P.K. Reddy, A.C.K. Chowlu, A.K. Ghoshal, Model-free kinetics analysis of nanocrystalline HZSM-5 catalyzed pyrolysis of polypropylene (PP), Thermochim Acta, 468(1-2),2008, 94–100.
  • C. Covarrubias, F. Gracia, H. Palza, Catalytic degradation of polyethylene using nanosized ZSM-2 zeolite, Appl Catal A-Gen, 384(1-2), 2010, 186–191.
  • K. Al bkoor Alrawashdeh, K. Slopiecka, A.A. Alshorman, P. Bartocci, F. Fantozzi, Pyrolytic degradation of olive waste residue (OWR) by TGA: thermal decomposition behavior and kinetic study, J Energ Power Eng, 11(8). 2017, 497–510.
  • J.Shah, M.R. Jan, Z. Hussain, Catalytic pyrolysis of low-density polyethylene with lead sulfide into fuel oil, Polym Degrad Stab, 87(2), 2005,329–333.
  • A.S. Al-Rahbi, J.A. Onwudili, P.T. Williams, Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char, Bioresource Technol, 204, 2016, 71–79.
  • D.Q. Fu, X.H. Li, W.Y. Li, J. Feng, Catalytic upgrading of coal pyrolysis products over bio-char, Fuel Process Technol, 176, 2018, 240–248.
  • K.Sun, N.J. Themelis, A.T. Bourtsalas, Q. Huang, Selective production of aromatics from waste plastic pyrolysis by using sewage sludge derived char catalyst, J Clean Prod, 268, 2020, 122038.
  • H.Weldekidan, V. Strezov, T. Kan, R. Kumar, J. He, G. Town, Solar assisted catalytic pyrolysis of chicken-litter waste with in-situ and ex-situ loading of CaO and char, Fuel, 2019, 246, 408–416.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enstrümantal Yöntemler, Analitik Kimya (Diğer)
Bölüm Research Articles
Yazarlar

Esra Yel 0000-0002-1019-4182

Merve Kalem 0000-0002-8874-1801

Gamze Göktepeli 0000-0003-2056-5845

Afra Özgan Kurt 0000-0002-0364-1685

Gülnare Ahmetli 0000-0002-9381-4139

Vildan Önen 0000-0002-8139-8385

Proje Numarası This study was financially supported by the Bilateral Joint Research Project between TUBITAK (Turkey) [CAYDAG-118Y475] and JSPS (Japan) [JPJSBP12019942].
Yayımlanma Tarihi 31 Ocak 2025
Gönderilme Tarihi 30 Aralık 2024
Kabul Tarihi 22 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Yel, E., Kalem, M., Göktepeli, G., Özgan Kurt, A., vd. (2025). Catalytic co-pyrolysis of PET/PP plastics and olive pomace biomass with marble sludge catalyst. Turkish Journal of Analytical Chemistry, 7(1), 33-45. https://doi.org/10.51435/turkjac.1609960
AMA Yel E, Kalem M, Göktepeli G, Özgan Kurt A, Ahmetli G, Önen V. Catalytic co-pyrolysis of PET/PP plastics and olive pomace biomass with marble sludge catalyst. TurkJAC. Ocak 2025;7(1):33-45. doi:10.51435/turkjac.1609960
Chicago Yel, Esra, Merve Kalem, Gamze Göktepeli, Afra Özgan Kurt, Gülnare Ahmetli, ve Vildan Önen. “Catalytic Co-Pyrolysis of PET/PP Plastics and Olive Pomace Biomass With Marble Sludge Catalyst”. Turkish Journal of Analytical Chemistry 7, sy. 1 (Ocak 2025): 33-45. https://doi.org/10.51435/turkjac.1609960.
EndNote Yel E, Kalem M, Göktepeli G, Özgan Kurt A, Ahmetli G, Önen V (01 Ocak 2025) Catalytic co-pyrolysis of PET/PP plastics and olive pomace biomass with marble sludge catalyst. Turkish Journal of Analytical Chemistry 7 1 33–45.
IEEE E. Yel, M. Kalem, G. Göktepeli, A. Özgan Kurt, G. Ahmetli, ve V. Önen, “Catalytic co-pyrolysis of PET/PP plastics and olive pomace biomass with marble sludge catalyst”, TurkJAC, c. 7, sy. 1, ss. 33–45, 2025, doi: 10.51435/turkjac.1609960.
ISNAD Yel, Esra vd. “Catalytic Co-Pyrolysis of PET/PP Plastics and Olive Pomace Biomass With Marble Sludge Catalyst”. Turkish Journal of Analytical Chemistry 7/1 (Ocak 2025), 33-45. https://doi.org/10.51435/turkjac.1609960.
JAMA Yel E, Kalem M, Göktepeli G, Özgan Kurt A, Ahmetli G, Önen V. Catalytic co-pyrolysis of PET/PP plastics and olive pomace biomass with marble sludge catalyst. TurkJAC. 2025;7:33–45.
MLA Yel, Esra vd. “Catalytic Co-Pyrolysis of PET/PP Plastics and Olive Pomace Biomass With Marble Sludge Catalyst”. Turkish Journal of Analytical Chemistry, c. 7, sy. 1, 2025, ss. 33-45, doi:10.51435/turkjac.1609960.
Vancouver Yel E, Kalem M, Göktepeli G, Özgan Kurt A, Ahmetli G, Önen V. Catalytic co-pyrolysis of PET/PP plastics and olive pomace biomass with marble sludge catalyst. TurkJAC. 2025;7(1):33-45.