Araştırma Makalesi
BibTex RIS Kaynak Göster

Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells

Yıl 2025, Cilt: 7 Sayı: 2, 228 - 236, 31.05.2025
https://doi.org/10.51435/turkjac.1658256

Öz

The green synthesis of blue fluorescent carbon nanodots (CNDs) from apricot kernel shells via a hydrothermal method was successfully executed. The interaction of the synthesized CNDs with various cations was systematically investigated using fluorescence spectroscopy. Fluorescence measurements were performed to evaluate the interaction of CNDs with 36 different cations, including Li⁺, Na⁺, K⁺, Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Sc³⁺, Y³⁺, Ti⁴⁺, V⁵⁺, Cr³⁺, Mo⁶⁺, W⁶⁺, Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Ag⁺, Zn²⁺, Cd²⁺, B³⁺, Al³⁺, Tl⁺, As⁵⁺, Se²+, NH₄⁺, Au³⁺, Sb³⁺, Sn⁴⁺, Bi³⁺, Hg²⁺, Pd²⁺, and Pb²⁺. Among these, the CNDs exhibited exceptional selectivity and sensitivity as a fluorescent probe for the detection of Hg²⁺ ions. The working range for Hg²⁺ detection was established as 35–95 µM, with a detection limit of 14.0 µM and a quantification limit of 41.4 µM. The method was validated and successfully applied to tap water and river water, demonstrating the practical utility of CNDs derived from apricot seed shells for environmental monitoring and analytical applications.

Kaynakça

  • D.S. Chauhan, MA. Quraishi, C. Verma, Carbon nanodots: recent advances in synthesis and applications, Carbon Lett, 32, 2022, 1603–1629.
  • S. Dinç, M. Kara, Synthesis and applications of carbon dots from food and natural products: Review, J Api Nat, 1, 2018, 33–37.
  • M. Jabeen, I. Mutaza, A comprehensive review on carbon quantum dots, Turk J Anal Chem 6, 2024, 50–60.
  • X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications, TrAC Trends Anal Chem, 87, 2017, 163–180.
  • WL. Zhong, JY. Yang, Fluorescent carbon quantum dots for heavy metal sensing, Sci Total Environ, 957, 2024, 177473.
  • G. Bjørklund, M. Dadar, J. Mutter, J. Aaseth, The toxicology of mercury: Current research and emerging trends. Environ Res, 159, 2017, 545–554.
  • A. Kumar, V. Kumar, P. Bakshi, RD. Parihar, M. Radziemska, R. Kumar, Mercury in the natural environment: Biogeochemical cycles and associated health risks, J Geochem Explor 267, 2024, 107594.
  • M.V. Maia, WT. Suarez, V. Bezerra dos Santos, SC. Bezerra de Oliveira, JP. Barbosa de Almeida, A novel approach to Hg2+ determination in water samples using carbon dots based on paper and fluorescence digital image analysis, J Chem Technol Biotechnol, 99, 2024, 1157–1164.
  • DJ. Dai, CY. Zhang, NT. Thi Dieu Thuy, G. Zhao, W. Lu, JY. Fan, Strong fluorescence quenching of carbon dots by mercury (II) ions: Ground-state electron transfer and diminished oscillator strength, Diam Relat Mater, 126, 2022, 109076.
  • J.Y. Liang, L. Han, SG. Liu, YJ. Ju, NB. Li, HQ. Luo, Carbon dots-based fluorescent turn off/on sensor for highly selective and sensitive detection of Hg2+ and biothiols. Spectrochim Acta A: Mol Biomol Spectrosc, 222, 2019, 117260.
  • E. Yahyazadeh, F. Shemirani, Easily synthesized carbon dots for determination of mercury (II) in water samples, Heliyon 5, 2019, e01596.
  • PY. Yin, GX. Yao, TR. Zou, N. Na, WR. Yang, HB. Wang, W. Tan, Facile preparation of N, S co-doped carbon dots and their application to a novel off-on fluorescent probe for selective determination of Hg2+, Dyes Pigments, 206, 2022, 110668.
  • ZH. Gao, ZZ. Lin, XM. Chen, ZZ. Lai, ZY. Huang, Carbon dots-based fluorescent probe for trace Hg2+ detection in water sample, Sens Actuators B Chem, 222, 2016, 965–971.
  • S. Samota, P. Tewatia, R. Rani, S. Chakraverty, A. Kaushik, Carbon dot nanosensors for ultra-low level, rapid assay of mercury ions synthesized from an aquatic weed, Typha angustata Bory (Patera), Diam Relat Mater, 130, 2022, 109433.
  • KHH. Aziz, KM. Omer, RF. Hamarawfa, Lowering the detection limit towards nanomolar mercury ion detection via surface modification of N-doped carbon quantum dots, New J Chem, 4, 2019, 8677–8683.
  • L.K. Singh, S. Sharma, K.K. Ghosh, Spectroscopic detection of Hg2+ in water samples using fluorescent carbon quantum dots as sensing probe, Main Group Chem, 20, 2021, 1–18.
  • D. Huang, CG. Niu, M. Ruan, X.Y. Wang, G.M. Zeng, C.H. Deng, Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles, Environ Sci Technol, 47, 2013, 4392–4398.
  • Y. Zhang, N. Jing, JQ. Zhang, YT. Wang, Hydrothermal synthesis of nitrogen-doped carbon dots as a sensitive fluorescent probe for the rapid, selective determination of Hg2+, Int J Environ Anal Chem, 97, 2017, 841–853.
  • H.H. Jing, F. Bardakci, S. Akgöl, K. Kusat, M. Adnan, M.J. Alam, R. Gupta, S. Sahreen, Y. Chen, S.C.B. Gopinath, S. Sasidharan, Green Carbon Dots: Synthesis, characterization, properties and biomedical applications, J Funct Biomater, 14, 2023, 27.
  • H.B. Xu, S.H. Zhou, M.Y. Li, P.R. Zhang, Z.H. Wang, Y.M. Tian, X.Q. Wang, Preparation of biomass-waste-derived carbon dots from apricot shell for highly sensitive and selective detection of ascorbic acid, Chinese J Anal Chem, 50, 2022, 100168.
  • Z.Q. Zhang, C.H. Zhou, J.M. Yang, B.J. Yan, J.H. Liu, S.N. Wang, Q. Li, M.M. Zhou, Preparation and characterization of apricot kernel shell biochar and its adsorption mechanism for atrazine, Sustainability, 14, 2022, 4082.
  • G. Predeanu, V. Slăvescu, M.F. Drăgoescu, N.M. Bălănescu, A. Fiti, A. Meghea, P. Samoila, V. Harabagiu, M. Ignat, A.M. Manea-Saghin, BS. Vasile, N. Badea, Green synthesis of advanced carbon materials used as precursors for adsorbents applied in wastewater treatment, Materials (Basel), 16, 2023, 1036.
  • S.D. Torres Landa, N.K. Bogireddy, I. Kaur, V. Batra, V. Agarwal, Heavy metal ion detection using green precursor derived carbon dots, iScience, 25, 2022, 103816.
  • F. Li, C.J. Liu, J. Yang, Z. Wang, W.G. Liu, F. Tian, Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging, RSC Adv, 4, 2014, 3201–3205.
  • D. Ozyurt, M. Al Kobaisi, R.K. Hocking, B. Fox, Properties, synthesis, and applications of carbon dots: A review, Carbon Trends, 12, 2023, 100276.
  • N.C. Verma, A. Yadav, C.K. Nandi, Paving the path to the future of carbogenic nanodots, Nat Commun, 10, 2019, 2391.
  • C.J. Reckmeier, J. Schneider, A.S. Susha, AL. Rogach, Luminescent colloidal carbon dots: optical properties and effects of doping, Opt Express, 24, 2016, A312-A340.
  • B. Ramoğlu, A. Gümrükçüoğlu, E. Çekirge, M. Ocak, Ü. Ocak, One spot microwave synthesis and characterization of nitrogen doped carbon dots with high oxygen content for fluorometric determination of banned Sudan II dye in spice samples, J Fluoresc, 31, 2021, 1587-1598.
  • A.B. Siddique, A.K. Pramanick, S. Chatterjee, M. Ray, Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol, Sci Rep, 8, 2018, 9770.
  • M. Kavgacı, HV. Kalmış, H. Eskalen, Synthesis of fluorescent carbon quantum dots with hydrothermal and solvothermal method application for anticounterfeiting and encryption, Int J Inn Eng Appl, 7, 2023, 32-38.
  • W.K. Zhang, Y.Q. Liu, X.R. Meng, T. Ding, Y.Q. Xu, H. Xu, Y.R. Ren, B.Y. Liu, J.J. Huang, J.H. Yang, XM. Fang, Graphenol defects induced blue emission enhancement in chemically reduced graphene quantum dots, Phys Chem Chem Phys, 17, 2015, 22361–22366.
  • Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, P.G. Luo, H. Yang, M..E. Kose, B. Chen, LM. Veca, S.Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence, Am Chem Soc, 128, 2006, 7756–7757.
  • Y. Çağlar, E.T. Saka, H. Alp, H. Kantekin, M. Ocak, Ü. Ocak, A simple spectrofluorimetric method based on quenching of a Nickel(II)-phthalocyanine complex to determine iron (III), J Fluoresc, 26, 2016, 1381–1389.
  • R. Zhang, W. Chen, Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions, Biosens Bioelectron, 56, 2014, 83–90.
  • H.M.R. Gonçalves, A.J. Duarte, J.C.G. Esteves Da Silva, Optical fiber sensor for Hg (II) based on carbon dots, Biosens Bioelectron, 4, 2010, 1302–1306.
  • L. Li, B. Yu, T. You, Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions, Biosens Bioelectron, 74, 2015, 263–269.
  • Y. Liu, C. Liu, Z. Zhang, Synthesis of highly luminescent graphitized carbon dots and the application in the Hg2+ detection, Appl Surf Sci, 258, 2012, 481–485.
  • N. Özbek, E. Çekirge, M. Ocak, Ü. Ocak, Highly Blue-fluorescent Carbon Quantum Dots Obtained from Medlar Seed for Hg2+ Determination in Real Water Samples, J Fluoresc, 34, 2024, 2533–2542.

Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells

Yıl 2025, Cilt: 7 Sayı: 2, 228 - 236, 31.05.2025
https://doi.org/10.51435/turkjac.1658256

Öz

The green synthesis of blue fluorescent carbon nanodots (CNDs) from apricot kernel shells via a hydrothermal method was successfully executed. The interaction of the synthesized CNDs with various cations was systematically investigated using fluorescence spectroscopy. Fluorescence measurements were performed to evaluate the interaction of CNDs with 36 different cations, including Li⁺, Na⁺, K⁺, Be²⁺, Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Sc³⁺, Y³⁺, Ti⁴⁺, V⁵⁺, Cr³⁺, Mo⁶⁺, W⁶⁺, Mn²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺, Ag⁺, Zn²⁺, Cd²⁺, B³⁺, Al³⁺, Tl⁺, As⁵⁺, Se²+, NH₄⁺, Au³⁺, Sb³⁺, Sn⁴⁺, Bi³⁺, Hg²⁺, Pd²⁺, and Pb²⁺. Among these, the CNDs exhibited exceptional selectivity and sensitivity as a fluorescent probe for the detection of Hg²⁺ ions. The working range for Hg²⁺ detection was established as 35–95 µM, with a detection limit of 14.0 µM and a quantification limit of 41.4 µM. The method was validated and successfully applied to tap water and river water, demonstrating the practical utility of CNDs derived from apricot seed shells for environmental monitoring and analytical applications.

Kaynakça

  • D.S. Chauhan, MA. Quraishi, C. Verma, Carbon nanodots: recent advances in synthesis and applications, Carbon Lett, 32, 2022, 1603–1629.
  • S. Dinç, M. Kara, Synthesis and applications of carbon dots from food and natural products: Review, J Api Nat, 1, 2018, 33–37.
  • M. Jabeen, I. Mutaza, A comprehensive review on carbon quantum dots, Turk J Anal Chem 6, 2024, 50–60.
  • X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications, TrAC Trends Anal Chem, 87, 2017, 163–180.
  • WL. Zhong, JY. Yang, Fluorescent carbon quantum dots for heavy metal sensing, Sci Total Environ, 957, 2024, 177473.
  • G. Bjørklund, M. Dadar, J. Mutter, J. Aaseth, The toxicology of mercury: Current research and emerging trends. Environ Res, 159, 2017, 545–554.
  • A. Kumar, V. Kumar, P. Bakshi, RD. Parihar, M. Radziemska, R. Kumar, Mercury in the natural environment: Biogeochemical cycles and associated health risks, J Geochem Explor 267, 2024, 107594.
  • M.V. Maia, WT. Suarez, V. Bezerra dos Santos, SC. Bezerra de Oliveira, JP. Barbosa de Almeida, A novel approach to Hg2+ determination in water samples using carbon dots based on paper and fluorescence digital image analysis, J Chem Technol Biotechnol, 99, 2024, 1157–1164.
  • DJ. Dai, CY. Zhang, NT. Thi Dieu Thuy, G. Zhao, W. Lu, JY. Fan, Strong fluorescence quenching of carbon dots by mercury (II) ions: Ground-state electron transfer and diminished oscillator strength, Diam Relat Mater, 126, 2022, 109076.
  • J.Y. Liang, L. Han, SG. Liu, YJ. Ju, NB. Li, HQ. Luo, Carbon dots-based fluorescent turn off/on sensor for highly selective and sensitive detection of Hg2+ and biothiols. Spectrochim Acta A: Mol Biomol Spectrosc, 222, 2019, 117260.
  • E. Yahyazadeh, F. Shemirani, Easily synthesized carbon dots for determination of mercury (II) in water samples, Heliyon 5, 2019, e01596.
  • PY. Yin, GX. Yao, TR. Zou, N. Na, WR. Yang, HB. Wang, W. Tan, Facile preparation of N, S co-doped carbon dots and their application to a novel off-on fluorescent probe for selective determination of Hg2+, Dyes Pigments, 206, 2022, 110668.
  • ZH. Gao, ZZ. Lin, XM. Chen, ZZ. Lai, ZY. Huang, Carbon dots-based fluorescent probe for trace Hg2+ detection in water sample, Sens Actuators B Chem, 222, 2016, 965–971.
  • S. Samota, P. Tewatia, R. Rani, S. Chakraverty, A. Kaushik, Carbon dot nanosensors for ultra-low level, rapid assay of mercury ions synthesized from an aquatic weed, Typha angustata Bory (Patera), Diam Relat Mater, 130, 2022, 109433.
  • KHH. Aziz, KM. Omer, RF. Hamarawfa, Lowering the detection limit towards nanomolar mercury ion detection via surface modification of N-doped carbon quantum dots, New J Chem, 4, 2019, 8677–8683.
  • L.K. Singh, S. Sharma, K.K. Ghosh, Spectroscopic detection of Hg2+ in water samples using fluorescent carbon quantum dots as sensing probe, Main Group Chem, 20, 2021, 1–18.
  • D. Huang, CG. Niu, M. Ruan, X.Y. Wang, G.M. Zeng, C.H. Deng, Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles, Environ Sci Technol, 47, 2013, 4392–4398.
  • Y. Zhang, N. Jing, JQ. Zhang, YT. Wang, Hydrothermal synthesis of nitrogen-doped carbon dots as a sensitive fluorescent probe for the rapid, selective determination of Hg2+, Int J Environ Anal Chem, 97, 2017, 841–853.
  • H.H. Jing, F. Bardakci, S. Akgöl, K. Kusat, M. Adnan, M.J. Alam, R. Gupta, S. Sahreen, Y. Chen, S.C.B. Gopinath, S. Sasidharan, Green Carbon Dots: Synthesis, characterization, properties and biomedical applications, J Funct Biomater, 14, 2023, 27.
  • H.B. Xu, S.H. Zhou, M.Y. Li, P.R. Zhang, Z.H. Wang, Y.M. Tian, X.Q. Wang, Preparation of biomass-waste-derived carbon dots from apricot shell for highly sensitive and selective detection of ascorbic acid, Chinese J Anal Chem, 50, 2022, 100168.
  • Z.Q. Zhang, C.H. Zhou, J.M. Yang, B.J. Yan, J.H. Liu, S.N. Wang, Q. Li, M.M. Zhou, Preparation and characterization of apricot kernel shell biochar and its adsorption mechanism for atrazine, Sustainability, 14, 2022, 4082.
  • G. Predeanu, V. Slăvescu, M.F. Drăgoescu, N.M. Bălănescu, A. Fiti, A. Meghea, P. Samoila, V. Harabagiu, M. Ignat, A.M. Manea-Saghin, BS. Vasile, N. Badea, Green synthesis of advanced carbon materials used as precursors for adsorbents applied in wastewater treatment, Materials (Basel), 16, 2023, 1036.
  • S.D. Torres Landa, N.K. Bogireddy, I. Kaur, V. Batra, V. Agarwal, Heavy metal ion detection using green precursor derived carbon dots, iScience, 25, 2022, 103816.
  • F. Li, C.J. Liu, J. Yang, Z. Wang, W.G. Liu, F. Tian, Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging, RSC Adv, 4, 2014, 3201–3205.
  • D. Ozyurt, M. Al Kobaisi, R.K. Hocking, B. Fox, Properties, synthesis, and applications of carbon dots: A review, Carbon Trends, 12, 2023, 100276.
  • N.C. Verma, A. Yadav, C.K. Nandi, Paving the path to the future of carbogenic nanodots, Nat Commun, 10, 2019, 2391.
  • C.J. Reckmeier, J. Schneider, A.S. Susha, AL. Rogach, Luminescent colloidal carbon dots: optical properties and effects of doping, Opt Express, 24, 2016, A312-A340.
  • B. Ramoğlu, A. Gümrükçüoğlu, E. Çekirge, M. Ocak, Ü. Ocak, One spot microwave synthesis and characterization of nitrogen doped carbon dots with high oxygen content for fluorometric determination of banned Sudan II dye in spice samples, J Fluoresc, 31, 2021, 1587-1598.
  • A.B. Siddique, A.K. Pramanick, S. Chatterjee, M. Ray, Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol, Sci Rep, 8, 2018, 9770.
  • M. Kavgacı, HV. Kalmış, H. Eskalen, Synthesis of fluorescent carbon quantum dots with hydrothermal and solvothermal method application for anticounterfeiting and encryption, Int J Inn Eng Appl, 7, 2023, 32-38.
  • W.K. Zhang, Y.Q. Liu, X.R. Meng, T. Ding, Y.Q. Xu, H. Xu, Y.R. Ren, B.Y. Liu, J.J. Huang, J.H. Yang, XM. Fang, Graphenol defects induced blue emission enhancement in chemically reduced graphene quantum dots, Phys Chem Chem Phys, 17, 2015, 22361–22366.
  • Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, P.G. Luo, H. Yang, M..E. Kose, B. Chen, LM. Veca, S.Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence, Am Chem Soc, 128, 2006, 7756–7757.
  • Y. Çağlar, E.T. Saka, H. Alp, H. Kantekin, M. Ocak, Ü. Ocak, A simple spectrofluorimetric method based on quenching of a Nickel(II)-phthalocyanine complex to determine iron (III), J Fluoresc, 26, 2016, 1381–1389.
  • R. Zhang, W. Chen, Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions, Biosens Bioelectron, 56, 2014, 83–90.
  • H.M.R. Gonçalves, A.J. Duarte, J.C.G. Esteves Da Silva, Optical fiber sensor for Hg (II) based on carbon dots, Biosens Bioelectron, 4, 2010, 1302–1306.
  • L. Li, B. Yu, T. You, Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions, Biosens Bioelectron, 74, 2015, 263–269.
  • Y. Liu, C. Liu, Z. Zhang, Synthesis of highly luminescent graphitized carbon dots and the application in the Hg2+ detection, Appl Surf Sci, 258, 2012, 481–485.
  • N. Özbek, E. Çekirge, M. Ocak, Ü. Ocak, Highly Blue-fluorescent Carbon Quantum Dots Obtained from Medlar Seed for Hg2+ Determination in Real Water Samples, J Fluoresc, 34, 2024, 2533–2542.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Spektrometri, Enstrümantal Yöntemler
Bölüm Research Articles
Yazarlar

Najlaa Ayad Salahaldeen 0009-0009-3281-1020

Nurhayat Özbek 0000-0001-7347-5582

Ümmühan Turgut Ocak 0000-0003-3696-4736

Miraç Ocak 0000-0002-8047-7372

Yayımlanma Tarihi 31 Mayıs 2025
Gönderilme Tarihi 16 Mart 2025
Kabul Tarihi 23 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Ayad Salahaldeen, N., Özbek, N., Turgut Ocak, Ü., Ocak, M. (2025). Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells. Turkish Journal of Analytical Chemistry, 7(2), 228-236. https://doi.org/10.51435/turkjac.1658256
AMA Ayad Salahaldeen N, Özbek N, Turgut Ocak Ü, Ocak M. Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells. TurkJAC. Mayıs 2025;7(2):228-236. doi:10.51435/turkjac.1658256
Chicago Ayad Salahaldeen, Najlaa, Nurhayat Özbek, Ümmühan Turgut Ocak, ve Miraç Ocak. “Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells”. Turkish Journal of Analytical Chemistry 7, sy. 2 (Mayıs 2025): 228-36. https://doi.org/10.51435/turkjac.1658256.
EndNote Ayad Salahaldeen N, Özbek N, Turgut Ocak Ü, Ocak M (01 Mayıs 2025) Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells. Turkish Journal of Analytical Chemistry 7 2 228–236.
IEEE N. Ayad Salahaldeen, N. Özbek, Ü. Turgut Ocak, ve M. Ocak, “Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells”, TurkJAC, c. 7, sy. 2, ss. 228–236, 2025, doi: 10.51435/turkjac.1658256.
ISNAD Ayad Salahaldeen, Najlaa vd. “Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells”. Turkish Journal of Analytical Chemistry 7/2 (Mayıs2025), 228-236. https://doi.org/10.51435/turkjac.1658256.
JAMA Ayad Salahaldeen N, Özbek N, Turgut Ocak Ü, Ocak M. Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells. TurkJAC. 2025;7:228–236.
MLA Ayad Salahaldeen, Najlaa vd. “Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells”. Turkish Journal of Analytical Chemistry, c. 7, sy. 2, 2025, ss. 228-36, doi:10.51435/turkjac.1658256.
Vancouver Ayad Salahaldeen N, Özbek N, Turgut Ocak Ü, Ocak M. Eco-friendly spectrofluorimetric determination of Hg²⁺ using green-synthesized carbon nanodots from apricot kernel shells. TurkJAC. 2025;7(2):228-36.