Araştırma Makalesi
BibTex RIS Kaynak Göster

Naphthalen-1-yl 2,4,6-Trimetil Benzenesülfonatın, Kadmiyum Stresi Altındaki Zea mays L.'de Mikro Besin ve Elemental Denge Üzerindeki Etkisi

Yıl 2025, Cilt: 7 Sayı: 3, 250 - 256, 30.09.2025
https://doi.org/10.51435/turkjac.1673423

Öz

Bu çalışma, naphthalen-1-yl 2,4,6-trimetil benzenesülfonatın (NTB) kadmiyum (Cd) stresi altındaki Zea mays L.'de mikro besin verimliliğini ve elementel durumunu iyileştirme potansiyelini araştırmaktadır. Üç haftalık mısır fideleri, NTB (0.25 mM) ile ön uygulama yapıldıktan sonra 100 µM Cd stresine maruz bırakılmıştır. Elde edilen sonuçlar, sadece Cd stresi uygulanan durumla karşılaştırıldığında, NTB uygulamasının çinko (Zn) için 3.35 ± 0.7 mg kg⁻¹ DW, demir (Fe) için 5.94 ± 0.01 mg kg⁻¹ DW ve bakır (Cu) için 1.17 ± 0.02 mg kg⁻¹ DW değerleriyle temel mikro besinlerin birikimini anlamlı derecede artırdığını göstermektedir. Buna karşılık, NTB + Cd uygulamasıyla manganez (Mn) içeriği 9.93 ± 1.4 mg kg⁻¹ DW seviyesine düşmüştür. Ayrıca, NTB uygulaması karbon (C) ve hidrojen (H) içeriklerini sırasıyla %46.65 ± 0.3 ve %6.02 ± 0.09 seviyelerine çıkarırken, azot (N) içeriği Cd stresi altında %2.37 ± 0.3’e düşmüştür. N değerindeki bu azalmaya rağmen, NTB kadmiyumun olumsuz etkilerini etkin bir şekilde hafifletmiş, böylece besin alımını artırma, elementel dengeyi optimize etme ve ağır metal stresi altındaki bitki dayanıklılığını geliştirme potansiyelini ortaya koymuştur.

Kaynakça

  • M.M. Uddin, Z. Chen, F. Xu, L. Huang, Physiological and cellular ultrastructural responses of Sesuvium portulacastrum under Cd stress grown hydroponically, Plants, 12(19), 2023, 3381.
  • H. Mubeen, I. Naeem, A. Taskeen, Phytoremediation of Cu (II) by Calotropis procera roots, NY Sci J, 3(3), 2010, 1-5.
  • O.O. Okedeyi, S. Dube, O.R. Awofolu, M.N. Nindi, Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa, Environ Sci Pollut Res, 21, 2014, 4686-4696.
  • T. Ogawa, E. Kobayashi, Y. Okubo, Y. Suwazono, T. Kido, K. Nogawa, Relationship among prevalence of patients with itai-itai disease, prevalence of abnormal urinary findings, and cadmium concentrations in rice of individual hamlets in the Jinzu river basin, Toyama prefecture of Japan, Int J Environ Health Res, 14, 2004, 243-252.
  • A. Kafel, K. Rozpędek, E. Szulińska, A. Zawisza-Raszka, P. Migula, The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae), Environ Sci Pollut Res, 21, 2014, 4705-4715.
  • D. Zhang, L. Ren, G.Q. Chen, J. Zhang, B.M. Reed, X.H. Shen, ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox, Plant Cell Rep, 34, 2015, 1499-1513.
  • A. Singh, N.B. Singh, I. Hussain, H. Singh, Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis, J Biotech, 262, 2017, 11-27.
  • M.Z. Abdin, A. Ahmad, N. Khan, I. Khan, A. Jamal, M. Iqbal, Sulphur interaction with other nutrients, Sulphur in Plants, 2003, 359-374.
  • M.J. Hawkesford, An overview of nutrient use efficiency and strategies for crop improvements, The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, 2011, 3-19.
  • R.K. Singhal, S. Fahad, P. Kumar, P. Choyal, T. Javed, D. Jinger, P. Singh, D. Saha, P. MD, B. Bose, H. Akash, N.K. Gupta, R. Sodani, D. Dev, D.L. Suthar, K. Liu, M.T. Harrison ve S. Saud, A.N. Shah, T. Nawaz, Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance, Plant Growth Regul, 100(2), 2023, 237-265.
  • C. Ou, W. Cheng, Z. Wang, X. Yao, S. Yang, Exogenous melatonin enhances Cd stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress, Ecotoxicol Environ Saf, 252, 2023, 114619.
  • Q. Lu, T. Zhang, W. Zhang, C. Su, Y. Yang, D. Hu, Q. Xu, Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid, Ecotoxicol Environ Saf, 147, 2018, 500-508.
  • A. Song, Z. Li, J. Zhang, G. Xue, F. Fan, Y. Liang, Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity, J Hazard Mater, 172(1), 2009, 74-83.
  • F. Yetişsin, A. Korkmaz, Synthesis and characterization of naphthalene-sulfonate hybrid structures and their effects on abiotic stress indicators in maize, Anatol J Forest Res, 9(1), 2023, 89-95.
  • H.I. Jung, T.G. Lee, J. Lee, M.J. Chae, E.J. Lee, M.S. Kim, G.B. Jung, A. Emmanuel, S. Jeon, B.R. Lee, Foliar-applied glutathione mitigates cadmium-induced oxidative stress by modulating antioxidant-scavenging, redox-regulating, and hormone-balancing systems in Brassica napus, Front Plant Sci, 12, 2021, 700413.
  • M. Ahmad, E.A. Waraich, U. Zulfiqar, J.W.H. Yong, M. Ishfaq, K.U. Din, A. Ullah, A. Abbas, M.I. Awan, I.M. Moussa, M.S. Elshikh, Thiourea improves yield and quality traits of Brassica napus L. by upregulating the antioxidant defense system under high temperature stress, Sci Rep, 14, 2024, 12195.
  • R. Kashapov, G. Gaynanova, D. Gabdrakhmanov, D. Kuznetsov, R. Pavlov, K. Petrov, L. Zakharova, O. Sinyashin, Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers, Int J Mol Sci, 21(18), 2020, 6961.
  • M.J.L. Castro, C. Ojeda, A. Fernández Cirelli, Advances in surfactants for agrochemicals, Environmental Chemistry Letters, 12(1), 2014, 85–95.
  • M. Demiralay, Exogenous acetone O-(4-chlorophenylsulfonyl) oxime alleviates Cd stress-induced photosynthetic damage and oxidative stress by regulating the antioxidant defense mechanism in Zea mays, Physiol Mol Biol Plants, 28(11), 2022, 2069-2083.
  • A. Benabderrahmane, M. Atmani, W. Rhioui, A. Boutagayout, F. Errachidi, S. Belmalha, Chemical and elemental composition of Ammi visnaga L. and Calendula officinalis L. from Meknes, Morocco, J Ecol Eng, 24(8), 2023, 84-94.
  • M. Subašić, D. Šamec, A. Selović, E. Karalija, Phytoremediation of cadmium polluted soils: current status and approaches for enhancing, Soil Syst, 6(1), 2022, 3.
  • S.M. Gallego, L.B. Pena, R.A. Barcia, C.E. Azpilicueta, M.F. Iannone, E.P. Rosales, M.S. Zawoznik, M.D. Groppa, M.P. Benavides, Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms, Environ Exp Bot, 83, 2012, 33-46.
  • H. Huang, M. Li, M. Rizwan, Z. Dai, Y. Yuan, M.M. Hossain, M. Cao, S. Xiong, S. Tu, Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants, J Hazard Mater, 401, 2021, 123393.
  • Y.E. Chen, H.T. Mao, N. Wu, A. Khan, A. Mohi Ud Din, C.B. Ding, Z.W. Zhang, S. Yuan, M. Yuan, Different tolerance of photosynthetic apparatus to Cd stress in two rice cultivars with the same leaf Cd accumulation, Acta Physiol Plant, 41, 2019, 1-13.
  • Z. Zhou, C. Wei, H. Liu, Q. Jiao, G. Li, J. Zhang, B. Zhang, W. Jin, D. Lin, G. Chen, S. Yang, Exogenous ascorbic acid application alleviates cadmium toxicity in seedlings of two wheat (Triticum aestivum L.) varieties by reducing cadmium uptake and enhancing antioxidative capacity, Environ Sci Pollut, 29, 2022, 21739-21750.
  • Y. Li, L. Liang, S. Huang, W. Li, U. Ashraf, L. Ma, Z. Mo, Exogenous melatonin and catechol application modulate physio-biochemical attributes and early growth of fragrant rice under Cd toxicity, J Soil Sci Plant Nutr, 21(3), 2021, 2285-2296.
  • X. Wang, S. Ai, H. Liao, Deciphering interactions between phosphorus status and toxic metal exposure in plants and rhizospheres to improve crops reared on acid soil, Cells, 12(3), 2023, 441.
  • F. Yetişsin, İ. Sevimli, Acetone O-(4-chlorophenylsulfonyl) oxime as an agent alleviating the adverse effects of drought stress in maize, JIST, 12(4), 2022, 2014-2026.
  • F. Yetişsin, Exogenous acetone O-(2-naphthylsulfonyl) oxime improves the adverse effects of excess copper by copper detoxification systems in maize, Int J Phytoremediation, 25(14), 2023, 2001-2013.
  • S.S. Gill, N. Tuteja, Cadmium stress tolerance in crop plants: probing the role of sulfur, Plant Signal Behav, 6(2), 2011, 215-222.
  • C. Poschenrieder, B. Gunse, J. Barcelo, Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves, Plant Physiol, 90(4), 1989, 1365-1371.
  • M.K. Hasan, G.J. Ahammed, S. Sun, M. Li, H. Yin, J. Zhou, Melatonin inhibits cadmium translocation and enhances plant tolerance by regulating sulfur uptake and assimilation in Solanum lycopersicum L., J Agric Food Chem, 67(38), 2019, 10563-10576.
  • A. Zahid, K. Ul Din, M. Ahmad, U. Hayat, U. Zulfiqar, S.M.H. Askri, M.Z. Anjum, M.F. Maqsood, N. Aijaz, T. Chaudhary, H.M. Ali, Exogenous application of sulfur-rich thiourea to alleviate the adverse effects of cobalt stress in wheat, BMC Plant Biol, 24(1), 2024, 126.
  • R. Nazar, S. Umar, N.A. Khan, Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate–glutathione metabolism and S-assimilation in mustard under salt stress, Plant Signal Behav, 10(3), 2015, e1003751.

The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress

Yıl 2025, Cilt: 7 Sayı: 3, 250 - 256, 30.09.2025
https://doi.org/10.51435/turkjac.1673423

Öz

This study explores the potential of Naphthalen-1-yl 2, 4, 6-trimethyl benzenesulfonate (NTB) in improving micronutrient efficiency and elemental status in Zea mays L. under cadmium (Cd) stress. Three-week-old maize seedlings were pre-treated with NTB (0.25 mM) and exposed to 100 µM Cd stress. The results demonstrate that NTB treatment significantly increased the accumulation of essential micronutrients, including zinc (Zn), iron (Fe), and copper (Cu), with values of 3.35 ± 0.7 mg kg⁻¹ DW for Zn, 5.94 ± 0.01 mg kg⁻¹ DW for Fe, and 1.17 ± 0.02 mg kg⁻¹ DW for Cu, compared to Cd stress alone. In contrast, manganese (Mn) content was reduced in the NTB + Cd treatment (9.93 ± 1.4 mg kg⁻¹ DW). Additionally, NTB treatment enhanced carbon (C) and hydrogen (H) contents, reaching 46.65 ± 0.3% and 6.02 ± 0.09%, respectively, while nitrogen (N) content decreased to 2.37 ± 0.3% under Cd stress. Despite this decrease in N, NTB effectively mitigated the negative effects of cadmium, highlighting its potential to improve nutrient uptake, optimize elemental balance, and enhance plant resilience under heavy metal stress.

Kaynakça

  • M.M. Uddin, Z. Chen, F. Xu, L. Huang, Physiological and cellular ultrastructural responses of Sesuvium portulacastrum under Cd stress grown hydroponically, Plants, 12(19), 2023, 3381.
  • H. Mubeen, I. Naeem, A. Taskeen, Phytoremediation of Cu (II) by Calotropis procera roots, NY Sci J, 3(3), 2010, 1-5.
  • O.O. Okedeyi, S. Dube, O.R. Awofolu, M.N. Nindi, Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha) around coal-fired power plants in South Africa, Environ Sci Pollut Res, 21, 2014, 4686-4696.
  • T. Ogawa, E. Kobayashi, Y. Okubo, Y. Suwazono, T. Kido, K. Nogawa, Relationship among prevalence of patients with itai-itai disease, prevalence of abnormal urinary findings, and cadmium concentrations in rice of individual hamlets in the Jinzu river basin, Toyama prefecture of Japan, Int J Environ Health Res, 14, 2004, 243-252.
  • A. Kafel, K. Rozpędek, E. Szulińska, A. Zawisza-Raszka, P. Migula, The effects of cadmium or zinc multigenerational exposure on metal tolerance of Spodoptera exigua (Lepidoptera: Noctuidae), Environ Sci Pollut Res, 21, 2014, 4705-4715.
  • D. Zhang, L. Ren, G.Q. Chen, J. Zhang, B.M. Reed, X.H. Shen, ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox, Plant Cell Rep, 34, 2015, 1499-1513.
  • A. Singh, N.B. Singh, I. Hussain, H. Singh, Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis, J Biotech, 262, 2017, 11-27.
  • M.Z. Abdin, A. Ahmad, N. Khan, I. Khan, A. Jamal, M. Iqbal, Sulphur interaction with other nutrients, Sulphur in Plants, 2003, 359-374.
  • M.J. Hawkesford, An overview of nutrient use efficiency and strategies for crop improvements, The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops, 2011, 3-19.
  • R.K. Singhal, S. Fahad, P. Kumar, P. Choyal, T. Javed, D. Jinger, P. Singh, D. Saha, P. MD, B. Bose, H. Akash, N.K. Gupta, R. Sodani, D. Dev, D.L. Suthar, K. Liu, M.T. Harrison ve S. Saud, A.N. Shah, T. Nawaz, Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance, Plant Growth Regul, 100(2), 2023, 237-265.
  • C. Ou, W. Cheng, Z. Wang, X. Yao, S. Yang, Exogenous melatonin enhances Cd stress tolerance in Platycladus orientalis seedlings by improving mineral nutrient uptake and oxidative stress, Ecotoxicol Environ Saf, 252, 2023, 114619.
  • Q. Lu, T. Zhang, W. Zhang, C. Su, Y. Yang, D. Hu, Q. Xu, Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid, Ecotoxicol Environ Saf, 147, 2018, 500-508.
  • A. Song, Z. Li, J. Zhang, G. Xue, F. Fan, Y. Liang, Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity, J Hazard Mater, 172(1), 2009, 74-83.
  • F. Yetişsin, A. Korkmaz, Synthesis and characterization of naphthalene-sulfonate hybrid structures and their effects on abiotic stress indicators in maize, Anatol J Forest Res, 9(1), 2023, 89-95.
  • H.I. Jung, T.G. Lee, J. Lee, M.J. Chae, E.J. Lee, M.S. Kim, G.B. Jung, A. Emmanuel, S. Jeon, B.R. Lee, Foliar-applied glutathione mitigates cadmium-induced oxidative stress by modulating antioxidant-scavenging, redox-regulating, and hormone-balancing systems in Brassica napus, Front Plant Sci, 12, 2021, 700413.
  • M. Ahmad, E.A. Waraich, U. Zulfiqar, J.W.H. Yong, M. Ishfaq, K.U. Din, A. Ullah, A. Abbas, M.I. Awan, I.M. Moussa, M.S. Elshikh, Thiourea improves yield and quality traits of Brassica napus L. by upregulating the antioxidant defense system under high temperature stress, Sci Rep, 14, 2024, 12195.
  • R. Kashapov, G. Gaynanova, D. Gabdrakhmanov, D. Kuznetsov, R. Pavlov, K. Petrov, L. Zakharova, O. Sinyashin, Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers, Int J Mol Sci, 21(18), 2020, 6961.
  • M.J.L. Castro, C. Ojeda, A. Fernández Cirelli, Advances in surfactants for agrochemicals, Environmental Chemistry Letters, 12(1), 2014, 85–95.
  • M. Demiralay, Exogenous acetone O-(4-chlorophenylsulfonyl) oxime alleviates Cd stress-induced photosynthetic damage and oxidative stress by regulating the antioxidant defense mechanism in Zea mays, Physiol Mol Biol Plants, 28(11), 2022, 2069-2083.
  • A. Benabderrahmane, M. Atmani, W. Rhioui, A. Boutagayout, F. Errachidi, S. Belmalha, Chemical and elemental composition of Ammi visnaga L. and Calendula officinalis L. from Meknes, Morocco, J Ecol Eng, 24(8), 2023, 84-94.
  • M. Subašić, D. Šamec, A. Selović, E. Karalija, Phytoremediation of cadmium polluted soils: current status and approaches for enhancing, Soil Syst, 6(1), 2022, 3.
  • S.M. Gallego, L.B. Pena, R.A. Barcia, C.E. Azpilicueta, M.F. Iannone, E.P. Rosales, M.S. Zawoznik, M.D. Groppa, M.P. Benavides, Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms, Environ Exp Bot, 83, 2012, 33-46.
  • H. Huang, M. Li, M. Rizwan, Z. Dai, Y. Yuan, M.M. Hossain, M. Cao, S. Xiong, S. Tu, Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants, J Hazard Mater, 401, 2021, 123393.
  • Y.E. Chen, H.T. Mao, N. Wu, A. Khan, A. Mohi Ud Din, C.B. Ding, Z.W. Zhang, S. Yuan, M. Yuan, Different tolerance of photosynthetic apparatus to Cd stress in two rice cultivars with the same leaf Cd accumulation, Acta Physiol Plant, 41, 2019, 1-13.
  • Z. Zhou, C. Wei, H. Liu, Q. Jiao, G. Li, J. Zhang, B. Zhang, W. Jin, D. Lin, G. Chen, S. Yang, Exogenous ascorbic acid application alleviates cadmium toxicity in seedlings of two wheat (Triticum aestivum L.) varieties by reducing cadmium uptake and enhancing antioxidative capacity, Environ Sci Pollut, 29, 2022, 21739-21750.
  • Y. Li, L. Liang, S. Huang, W. Li, U. Ashraf, L. Ma, Z. Mo, Exogenous melatonin and catechol application modulate physio-biochemical attributes and early growth of fragrant rice under Cd toxicity, J Soil Sci Plant Nutr, 21(3), 2021, 2285-2296.
  • X. Wang, S. Ai, H. Liao, Deciphering interactions between phosphorus status and toxic metal exposure in plants and rhizospheres to improve crops reared on acid soil, Cells, 12(3), 2023, 441.
  • F. Yetişsin, İ. Sevimli, Acetone O-(4-chlorophenylsulfonyl) oxime as an agent alleviating the adverse effects of drought stress in maize, JIST, 12(4), 2022, 2014-2026.
  • F. Yetişsin, Exogenous acetone O-(2-naphthylsulfonyl) oxime improves the adverse effects of excess copper by copper detoxification systems in maize, Int J Phytoremediation, 25(14), 2023, 2001-2013.
  • S.S. Gill, N. Tuteja, Cadmium stress tolerance in crop plants: probing the role of sulfur, Plant Signal Behav, 6(2), 2011, 215-222.
  • C. Poschenrieder, B. Gunse, J. Barcelo, Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves, Plant Physiol, 90(4), 1989, 1365-1371.
  • M.K. Hasan, G.J. Ahammed, S. Sun, M. Li, H. Yin, J. Zhou, Melatonin inhibits cadmium translocation and enhances plant tolerance by regulating sulfur uptake and assimilation in Solanum lycopersicum L., J Agric Food Chem, 67(38), 2019, 10563-10576.
  • A. Zahid, K. Ul Din, M. Ahmad, U. Hayat, U. Zulfiqar, S.M.H. Askri, M.Z. Anjum, M.F. Maqsood, N. Aijaz, T. Chaudhary, H.M. Ali, Exogenous application of sulfur-rich thiourea to alleviate the adverse effects of cobalt stress in wheat, BMC Plant Biol, 24(1), 2024, 126.
  • R. Nazar, S. Umar, N.A. Khan, Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate–glutathione metabolism and S-assimilation in mustard under salt stress, Plant Signal Behav, 10(3), 2015, e1003751.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyolojik Olarak Aktif Moleküller
Bölüm Research Articles
Yazarlar

Cansu Altuntaş 0000-0002-1363-6142

Abidin Gümrükçüoğlu 0000-0001-7285-9664

Fuat Yetişsin 0000-0001-6085-7610

Mehmet Demiralay 0000-0001-6528-4591

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 10 Nisan 2025
Kabul Tarihi 8 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 3

Kaynak Göster

APA Altuntaş, C., Gümrükçüoğlu, A., Yetişsin, F., Demiralay, M. (2025). The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress. Turkish Journal of Analytical Chemistry, 7(3), 250-256. https://doi.org/10.51435/turkjac.1673423
AMA Altuntaş C, Gümrükçüoğlu A, Yetişsin F, Demiralay M. The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress. TurkJAC. Eylül 2025;7(3):250-256. doi:10.51435/turkjac.1673423
Chicago Altuntaş, Cansu, Abidin Gümrükçüoğlu, Fuat Yetişsin, ve Mehmet Demiralay. “The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress”. Turkish Journal of Analytical Chemistry 7, sy. 3 (Eylül 2025): 250-56. https://doi.org/10.51435/turkjac.1673423.
EndNote Altuntaş C, Gümrükçüoğlu A, Yetişsin F, Demiralay M (01 Eylül 2025) The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress. Turkish Journal of Analytical Chemistry 7 3 250–256.
IEEE C. Altuntaş, A. Gümrükçüoğlu, F. Yetişsin, ve M. Demiralay, “The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress”, TurkJAC, c. 7, sy. 3, ss. 250–256, 2025, doi: 10.51435/turkjac.1673423.
ISNAD Altuntaş, Cansu vd. “The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress”. Turkish Journal of Analytical Chemistry 7/3 (Eylül2025), 250-256. https://doi.org/10.51435/turkjac.1673423.
JAMA Altuntaş C, Gümrükçüoğlu A, Yetişsin F, Demiralay M. The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress. TurkJAC. 2025;7:250–256.
MLA Altuntaş, Cansu vd. “The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress”. Turkish Journal of Analytical Chemistry, c. 7, sy. 3, 2025, ss. 250-6, doi:10.51435/turkjac.1673423.
Vancouver Altuntaş C, Gümrükçüoğlu A, Yetişsin F, Demiralay M. The effect of naphthalen-1-yl 2,4,6-trimethyl benzenesulfonate on micronutrient and elemental balance in Zea mays L. Under cadmium stress. TurkJAC. 2025;7(3):250-6.