Araştırma Makalesi
BibTex RIS Kaynak Göster

Sıfır Değerlikli Katalizör Varlığında Fenton Benzeri Prosesin Etkinliğinin Belirlenmesi: Reaktif Boyar Madde Degredasyonu

Yıl 2025, Cilt: 7 Sayı: 3, 394 - 403, 30.09.2025
https://doi.org/10.51435/turkjac.1707754

Öz

Bu çalışmada, azo grubu Reaktif Kırmızı 2 (RR2) boyasının sulu çözeltiden sıfır değerlikli demir varlığında Fenton benzeri bir işlemle renk ve Kimyasal Oksijen İhtiyacı (KOİ) parametrelerine göre giderilebilirliği araştırılmıştır. pH, sıfır değerlikli demir ve hidrojen peroksit (H2O2) konsantrasyonlarının renk ve KOİ giderimi üzerindeki etkileri araştırılmıştır. Optimum renk ve KOİ giderimi koşulları pH 3, ZVI = 0,1 g/L ve H2O2 = 150 mg/L olarak belirlenmiştir. Optimum koşullar altında, başlangıç RR2 değerleri 10, 30, 50, 70, 100, 150 ve 200 mg/L olduğunda, renk giderimi %100 ile %95 arasında, KOİ giderimi ise %97,98 ile %65,67 arasında değişmiştir. RR2 konsantrasyonundaki artış, özellikle KOİ giderimi üzerinde olumsuz bir etkiye sahiptir. Kinetik değerlendirmeler, renk ve COD giderimi için en uygun proses koşulları altında, 20 °C sabit sıcaklıkta farklı boya konsantrasyonlarında prosesin zamanla verimliliğini inceleyerek yapılmıştır. Renk ve KOİ giderimi sonuçlarına sözde birinci derece, sözde ikinci derece ve Behnajady-Modirshahla-Ghanbery kinetik modelleri uygulanmıştır. 100, 150, 200 mg/L RR2 konsantrasyonlarında, BMG modelinde renk için belirleme katsayısı 0,9984-1 aralığında hesaplanırken, COD için 0,9935-0,9987 aralığında belirlenmiştir. Kinetik hesaplamaların sonuçları, Fenton benzeri reaksiyonun Behnajady-Modirshahla-Ghanbery modeline uyduğunu göstermiştir. Bu süreç, ucuz, kolay erişilebilir ve çevre dostu olması nedeniyle, özellikle renk giderimi için uygulanabilir bir ileri oksidasyon süreci olarak değerlendirilebilir.

Kaynakça

  • E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ Int, 2004, 30, 953–971.
  • J. Xia, Y. Shen, H. Zhang, X. Hu, M.M. Mian, W.H. Zhang, Synthesis of magnetic nZVI@biochar catalyst from acid precipitated black liquor and Fenton sludge and its application for Fenton-like removal of rhodamine B dye, Ind Crops Prod, 2022, 187, 115449.
  • F. Fu, Q. Wang, B. Tang, Effective degradation of C.I. Acid Red 73 by advanced Fenton process, J Hazard Mater, 174, 2010, 17–22.
  • F.M.D. Chequer, G. A. R. Oliveira, E. R. A. Ferraz, J. C. Cardoso, M. V. B. Zanoni, D. Oliveira, Textile Dyes: Dyeing Process and Environmental Impact, 2013, Eco-Friendly Text. Dye. Finish., Croatia
  • R.B. Chavan, Health and Environmental Hazards of Synthetic Dyes, Fibre 2 Fash., 2013,1–14.
  • R. Maas, S. Chaudhari, Adsorption and biological decolourization of azo dye Reactive Red 2 in semicontinuous anaerobic reactors, Process Biochem, 40, 2005, 699–705.
  • M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, A. El Harfi, Textile finishing dyes and their impact on aquatic environs, Heliyon, 5, 2019, e02711.
  • C. Osagie, A. Othmani, S. Ghosh, A. Malloum, Z. Kashitarash Esfahani, S. Ahmadi, Dyes adsorption from aqueous media through the nanotechnology: A review, J Mater Res Technol, 14, 2021, 2195–2218, 2021.
  • B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, J. C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol Res Innov, 3, 2019, 275–290.
  • J. Lan, Y. Sun, P. Huang, Y. Du, W. Zhan, T.C. Zhang, D. Du, Using Electrolytic Manganese Residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes, Chemosphere, 252, 2020, 126487.
  • J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Advanced oxidation processes for wastewater treatment: State of the art, Water Air Soil Pollut, 205, 2010, 187–204.
  • J.L. Wang, L.J. Xu, Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application, Crit Rev Environ Sci Technol, 42, 2012, 251–325.
  • D. Ghernaout, N. Elboughdiri, Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends, Open Access Libr J, 7, 2020, 1–15.
  • D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review, Water Res., 139, 2018, 118–131.
  • M. hui Zhang, H. Dong, L. Zhao, D. xi Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Sci. Total Environ., 670, 2019, 110–121.
  • A. Babuponnusami,K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2, 2014, 557–572.
  • J. H. Sun, S. H. Shi, Y. F. Lee, S. P. Sun, Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution, Chem. Eng. J., 155, 2009, 680–683.
  • Z. Eren, F. N. Acar, N. H. Ince, Fenton and Fenton-like oxidation of CI Basic Yellow 51: A comparative study, Color. Technol., 126, 2010, 337–341.
  • N. C. Fernandes, L. B. Brito, G. G. Costa, S. F. Taveira, M. S. S. Cunha–Filho, G. A. R. Oliveira, R. N. Marreto, Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests, Chem. Biol. Interact., 291, 2018, 47–54.
  • L. Xu, J. Wang, A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, J. Hazard. Mater.,186, 2011, 256–264.
  • C. Yang, D. Wang, Q. Tang, The synthesis of NdFeB magnetic activated carbon and its application in degradation of azo dye methyl orange by Fenton-like process, J. Taiwan Inst. Chem. Eng., 45, 2014, 2584–2589.
  • P. Hou, C. Shi, L. Wu, X. Hou, Chitosan/hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: Recyclable metal-promoted Fenton-like degradation, Microchem J, 128, 2016, 218–225.
  • R. Yang, Q. Peng, B. Yu, Y. Shen, H. Cong, Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal, Sep. Purif. Technol., 267, 2021, 118620.
  • S. Meng, Z. Nan, Selective degradation in Fenton-like reaction catalyzed by Na and Fe Co-doped g-C3N4 catalyst, Sep. Purif. Technol., 309, 2023, 123026.
  • K. S. Wang, C. L. Lin, H.H. Liang, H.C. Li,C. H. Chang, Y. T. Fang, S. H. Chang, Effects of dissolved oxygen on dye removal by zero-valent iron, J. Hazard. Mater., 182, 2010, 886–895.
  • S. Zha, Y. Cheng, Y. Gao, Z. Chen, M. Megharaj, R. Naidu, Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin, Chem. Eng. J., 255, 2014, 141–148.
  • X. Chen, D. Ji, X. Wang, L. Zang, Review on Nano zerovalent Iron (nZVI): From Modification to Environmental Applications, IOP Conf. Ser. Earth Environ. Sci., 51, 2017, 012004.
  • L. Liang, L. Cheng, Y. Zhang, Q. Wang, Q. Wu, Y. Xue, X. Meng, Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron, RSC Advances, 10(48), 2020, 28509–28515.
  • Z. Liu, W. Zhou, X. Liu, X. Yang, W. Yang, H. Zheng, Study on Treatment Performance of Desulfurization Wastewater by Zero-Valent Iron Fenton-like Process. Separations, 10(8), 2023, 451.
  • S. Liu, W. Yu, H. Cai, F. Lai, H. Fang, H. Huang, J. He, A comparison study of applying natural iron minerals and zero-valent metals as Fenton-like catalysts for the removal of imidacloprid, Environ Sci Pollut Res Int, 28(31), 2021, 42217–42229.
  • H. Li, X. Li, J. Long, K. Li, Y. Chen, J. Jiang, X. Chen, P. Zhang, Oxidation and removal of thallium and organics from wastewater using a zero-valent-iron-based Fenton-like technique, J Clean Prod, 221, 2019, 89–97.
  • S. Mu, X. Chen, Y. Luo, J. Zhang, Degradation of petroleum hydrocarbons in oil-based drilling cuttings by a zero-valent iron Fenton-like advanced oxidation system, Process Saf Environ Prot, 168, 2022, 883–891.
  • S. Bertolotti, R. Dogra, R. Sabatino, A. Di Cesare, S. Fenoglio, A. O. Adesina, L. Carena, S. Berto, M. Marafante, M. Minella, D. Vione, Two birds with one stone: Degradation of pharmaceuticals and elimination of bacteria upon treatment of urban wastewater with a Fenton-like process, based on zero-valent iron at pH 4. Chemosphere, 368, 2024, 143774.
  • M. Minella, S. Bertinetti, K. Hanna, C. Minero, D. Vione, Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton). Environ Res, 179, 2019, 108750.
  • Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1995, USA.
  • S.P. Sun, C.J. Li, J.H. Sun, S.H. Shi, M.H. Fan, Q. Zhou, Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study, J. Hazard. Mater., 161, 2009, 1052–1057.
  • M.A. Behnajady, N. Modirshahla, F. Ghanbary, A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process, J. Hazard. Mater., 148, 2007, 98–102.
  • E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J Hazard Mater, 98, 2003, 33–50.
  • B.H. Moon, Y.B. Park, K.H. Park, Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron, Desalination, 268, 2011, 249–252.
  • W. Zhang, H. Gao, J. He, P. Yang, D. Wang, T. Ma, H. Xia, X. Xu, Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway, Sep. Purif. Technol., 172, 2017, 158–167.
  • C. Bouasla, M. E. H. Samar, F. Ismail, Degradation of methyl violet 6B dye by the Fenton process, Desalination, 254, 2010, 35–41.
  • S. K. Singh, W. Z. Tang, Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment, Waste Manag., 33, 2013, 81–88.
  • N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J Environ Chem Eng., 4, 2016, 762–787.
  • O.B. Ayodele, J. K. Lim, B. H. Hameed, Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin, Appl Catal A Gen, 413–414, 2012, 301–309.
  • Ş. Kaya, Y. Aşçı, Evaluation of Color and COD Removal by Fenton and Photo-Fenton Processes from Industrial Paper Wastewater, Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg., 9, 2019, 1539–1550.
  • K. H. Chan, W. Chu, The dose and ratio effects of Fe(II) and H2O2 in Fenton’s process on the removal of atrazine, Environ Technol, 24, 2003, 703–710.
  • S. Tunç, T. Gürkan, O. Duman, On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process, Chem Eng J, 181–182, 2012, 431–442.
  • N. Ertugay, F.N. Acar, Color and COD removal of azo dye ‘Basic Blue 9’ by Fenton oxidation process: Determined of optimal parameters and kinetic study, J Adv Oxid Technol, 16, 2013, 268–274.
  • N. Ertugay, F.N. Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study, Arab J Chem, 10, 2017, 1158–1163.
  • S. Bayar, M. Erdogan, Removal of COD and color from reactive red 45 azo dye wastewater using fenton and fenton-like oxidation processes: Kinetic studies, Appl Ecol Environ Res, 17, 2019, 1517–1529.
  • W. Wang, Y. Qu, B. Yang, X. Liu, W. Su, Lactate oxidation in pyrite suspension: A Fenton-like process in situ generating H2O2, Chemosphere, 86, 2012, 376–382.
  • M. S. F. Santos, A. Alves, L. M. Madeira, Paraquat removal from water by oxidation with Fenton’s reagent, Chem. Eng. J., 175, 2011, 279
  • F. Li, T.S.Y. Choong, S. Soltani, L.C. Abdullah, M. Jamil, S.N. Ain, Kinetic Study of Fenton-Like Degradation of Methylene Blue in Aqueous Solution Using Calcium Peroxide. Pertanika J Sci Technol, 30(2), 2022, 1087 – 1102.
  • J. E. Kumar, T. Mulai, A. Tripathy, Behnajady-Modirshahla-Ghanbary kinetic model for degradation of Azo dye using Fenton oxidation process: A mini review, Next Res, 1(2), 2024, 100047.

Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation

Yıl 2025, Cilt: 7 Sayı: 3, 394 - 403, 30.09.2025
https://doi.org/10.51435/turkjac.1707754

Öz

In this study, the removability of azo group Reactive Red 2 (RR2) dye from aqueous solution was investigated in the presence of zero-valent iron with a Fenton-like process based on color and Chemical Oxygen Demand (COD) parameters. The effects of pH, zero-valent iron, and hydrogen peroxide (H2O2) concentrations on color and COD removal were investigated. The optimum color and COD removal conditions were determined as pH 3, ZVI = 0.1g/L, and H2O2 = 150mg/L. Under optimum conditions, at initial RR2 values of 10, 30, 50, 70, 100, 150, and 200 mg/L, color removal ranged from 100% to 95%, and COD removal ranged from 97.98% to 65.67%. The increase in RR2 concentration has a negative effect, mainly on COD removal. Kinetic evaluations were made by examining the efficiency of the process against time at different dyestuff concentrations at a constant temperature of 20οC under the most suitable process conditions for both color and COD removal. Pseudo-first-order, pseudo-second-order, and Behnajady-Modirshahla-Ghanbery kinetic models were applied to the color and COD removal results. At concentrations of 100, 150, 200 mg/L RR2, in the BMG model, the coefficient of determination for color was calculated in the range of 0.9984-1, while for COD it was determined in the range of 0.9935-0.9987. The results from kinetic calculations showed that the Fenton-like reaction fits the Behnajady-Modirshahla-Ghanbery model. This process can be considered a feasible advanced oxidation process, particularly for color removal, as it is inexpensive, easily accessible, and environmentally friendly.

Kaynakça

  • E. Forgacs, T. Cserháti, G. Oros, Removal of synthetic dyes from wastewaters: a review, Environ Int, 2004, 30, 953–971.
  • J. Xia, Y. Shen, H. Zhang, X. Hu, M.M. Mian, W.H. Zhang, Synthesis of magnetic nZVI@biochar catalyst from acid precipitated black liquor and Fenton sludge and its application for Fenton-like removal of rhodamine B dye, Ind Crops Prod, 2022, 187, 115449.
  • F. Fu, Q. Wang, B. Tang, Effective degradation of C.I. Acid Red 73 by advanced Fenton process, J Hazard Mater, 174, 2010, 17–22.
  • F.M.D. Chequer, G. A. R. Oliveira, E. R. A. Ferraz, J. C. Cardoso, M. V. B. Zanoni, D. Oliveira, Textile Dyes: Dyeing Process and Environmental Impact, 2013, Eco-Friendly Text. Dye. Finish., Croatia
  • R.B. Chavan, Health and Environmental Hazards of Synthetic Dyes, Fibre 2 Fash., 2013,1–14.
  • R. Maas, S. Chaudhari, Adsorption and biological decolourization of azo dye Reactive Red 2 in semicontinuous anaerobic reactors, Process Biochem, 40, 2005, 699–705.
  • M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, A. El Harfi, Textile finishing dyes and their impact on aquatic environs, Heliyon, 5, 2019, e02711.
  • C. Osagie, A. Othmani, S. Ghosh, A. Malloum, Z. Kashitarash Esfahani, S. Ahmadi, Dyes adsorption from aqueous media through the nanotechnology: A review, J Mater Res Technol, 14, 2021, 2195–2218, 2021.
  • B. Lellis, C. Z. Fávaro-Polonio, J. A. Pamphile, J. C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol Res Innov, 3, 2019, 275–290.
  • J. Lan, Y. Sun, P. Huang, Y. Du, W. Zhan, T.C. Zhang, D. Du, Using Electrolytic Manganese Residue to prepare novel nanocomposite catalysts for efficient degradation of Azo Dyes in Fenton-like processes, Chemosphere, 252, 2020, 126487.
  • J.M. Poyatos, M.M. Muñio, M.C. Almecija, J.C. Torres, E. Hontoria, F. Osorio, Advanced oxidation processes for wastewater treatment: State of the art, Water Air Soil Pollut, 205, 2010, 187–204.
  • J.L. Wang, L.J. Xu, Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application, Crit Rev Environ Sci Technol, 42, 2012, 251–325.
  • D. Ghernaout, N. Elboughdiri, Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends, Open Access Libr J, 7, 2020, 1–15.
  • D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review, Water Res., 139, 2018, 118–131.
  • M. hui Zhang, H. Dong, L. Zhao, D. xi Wang, D. Meng, A review on Fenton process for organic wastewater treatment based on optimization perspective, Sci. Total Environ., 670, 2019, 110–121.
  • A. Babuponnusami,K. Muthukumar, A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2, 2014, 557–572.
  • J. H. Sun, S. H. Shi, Y. F. Lee, S. P. Sun, Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution, Chem. Eng. J., 155, 2009, 680–683.
  • Z. Eren, F. N. Acar, N. H. Ince, Fenton and Fenton-like oxidation of CI Basic Yellow 51: A comparative study, Color. Technol., 126, 2010, 337–341.
  • N. C. Fernandes, L. B. Brito, G. G. Costa, S. F. Taveira, M. S. S. Cunha–Filho, G. A. R. Oliveira, R. N. Marreto, Removal of azo dye using Fenton and Fenton-like processes: Evaluation of process factors by Box–Behnken design and ecotoxicity tests, Chem. Biol. Interact., 291, 2018, 47–54.
  • L. Xu, J. Wang, A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol, J. Hazard. Mater.,186, 2011, 256–264.
  • C. Yang, D. Wang, Q. Tang, The synthesis of NdFeB magnetic activated carbon and its application in degradation of azo dye methyl orange by Fenton-like process, J. Taiwan Inst. Chem. Eng., 45, 2014, 2584–2589.
  • P. Hou, C. Shi, L. Wu, X. Hou, Chitosan/hydroxyapatite/Fe3O4 magnetic composite for metal-complex dye AY220 removal: Recyclable metal-promoted Fenton-like degradation, Microchem J, 128, 2016, 218–225.
  • R. Yang, Q. Peng, B. Yu, Y. Shen, H. Cong, Yolk-shell Fe3O4@MOF-5 nanocomposites as a heterogeneous Fenton-like catalyst for organic dye removal, Sep. Purif. Technol., 267, 2021, 118620.
  • S. Meng, Z. Nan, Selective degradation in Fenton-like reaction catalyzed by Na and Fe Co-doped g-C3N4 catalyst, Sep. Purif. Technol., 309, 2023, 123026.
  • K. S. Wang, C. L. Lin, H.H. Liang, H.C. Li,C. H. Chang, Y. T. Fang, S. H. Chang, Effects of dissolved oxygen on dye removal by zero-valent iron, J. Hazard. Mater., 182, 2010, 886–895.
  • S. Zha, Y. Cheng, Y. Gao, Z. Chen, M. Megharaj, R. Naidu, Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin, Chem. Eng. J., 255, 2014, 141–148.
  • X. Chen, D. Ji, X. Wang, L. Zang, Review on Nano zerovalent Iron (nZVI): From Modification to Environmental Applications, IOP Conf. Ser. Earth Environ. Sci., 51, 2017, 012004.
  • L. Liang, L. Cheng, Y. Zhang, Q. Wang, Q. Wu, Y. Xue, X. Meng, Efficiency and mechanisms of rhodamine B degradation in Fenton-like systems based on zero-valent iron, RSC Advances, 10(48), 2020, 28509–28515.
  • Z. Liu, W. Zhou, X. Liu, X. Yang, W. Yang, H. Zheng, Study on Treatment Performance of Desulfurization Wastewater by Zero-Valent Iron Fenton-like Process. Separations, 10(8), 2023, 451.
  • S. Liu, W. Yu, H. Cai, F. Lai, H. Fang, H. Huang, J. He, A comparison study of applying natural iron minerals and zero-valent metals as Fenton-like catalysts for the removal of imidacloprid, Environ Sci Pollut Res Int, 28(31), 2021, 42217–42229.
  • H. Li, X. Li, J. Long, K. Li, Y. Chen, J. Jiang, X. Chen, P. Zhang, Oxidation and removal of thallium and organics from wastewater using a zero-valent-iron-based Fenton-like technique, J Clean Prod, 221, 2019, 89–97.
  • S. Mu, X. Chen, Y. Luo, J. Zhang, Degradation of petroleum hydrocarbons in oil-based drilling cuttings by a zero-valent iron Fenton-like advanced oxidation system, Process Saf Environ Prot, 168, 2022, 883–891.
  • S. Bertolotti, R. Dogra, R. Sabatino, A. Di Cesare, S. Fenoglio, A. O. Adesina, L. Carena, S. Berto, M. Marafante, M. Minella, D. Vione, Two birds with one stone: Degradation of pharmaceuticals and elimination of bacteria upon treatment of urban wastewater with a Fenton-like process, based on zero-valent iron at pH 4. Chemosphere, 368, 2024, 143774.
  • M. Minella, S. Bertinetti, K. Hanna, C. Minero, D. Vione, Degradation of ibuprofen and phenol with a Fenton-like process triggered by zero-valent iron (ZVI-Fenton). Environ Res, 179, 2019, 108750.
  • Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 1995, USA.
  • S.P. Sun, C.J. Li, J.H. Sun, S.H. Shi, M.H. Fan, Q. Zhou, Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process: Effect of system parameters and kinetic study, J. Hazard. Mater., 161, 2009, 1052–1057.
  • M.A. Behnajady, N. Modirshahla, F. Ghanbary, A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process, J. Hazard. Mater., 148, 2007, 98–102.
  • E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J Hazard Mater, 98, 2003, 33–50.
  • B.H. Moon, Y.B. Park, K.H. Park, Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron, Desalination, 268, 2011, 249–252.
  • W. Zhang, H. Gao, J. He, P. Yang, D. Wang, T. Ma, H. Xia, X. Xu, Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway, Sep. Purif. Technol., 172, 2017, 158–167.
  • C. Bouasla, M. E. H. Samar, F. Ismail, Degradation of methyl violet 6B dye by the Fenton process, Desalination, 254, 2010, 35–41.
  • S. K. Singh, W. Z. Tang, Statistical analysis of optimum Fenton oxidation conditions for landfill leachate treatment, Waste Manag., 33, 2013, 81–88.
  • N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment, J Environ Chem Eng., 4, 2016, 762–787.
  • O.B. Ayodele, J. K. Lim, B. H. Hameed, Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin, Appl Catal A Gen, 413–414, 2012, 301–309.
  • Ş. Kaya, Y. Aşçı, Evaluation of Color and COD Removal by Fenton and Photo-Fenton Processes from Industrial Paper Wastewater, Iğdır Üniversitesi Fen Bilim. Enstitüsü Derg., 9, 2019, 1539–1550.
  • K. H. Chan, W. Chu, The dose and ratio effects of Fe(II) and H2O2 in Fenton’s process on the removal of atrazine, Environ Technol, 24, 2003, 703–710.
  • S. Tunç, T. Gürkan, O. Duman, On-line spectrophotometric method for the determination of optimum operation parameters on the decolorization of Acid Red 66 and Direct Blue 71 from aqueous solution by Fenton process, Chem Eng J, 181–182, 2012, 431–442.
  • N. Ertugay, F.N. Acar, Color and COD removal of azo dye ‘Basic Blue 9’ by Fenton oxidation process: Determined of optimal parameters and kinetic study, J Adv Oxid Technol, 16, 2013, 268–274.
  • N. Ertugay, F.N. Acar, Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study, Arab J Chem, 10, 2017, 1158–1163.
  • S. Bayar, M. Erdogan, Removal of COD and color from reactive red 45 azo dye wastewater using fenton and fenton-like oxidation processes: Kinetic studies, Appl Ecol Environ Res, 17, 2019, 1517–1529.
  • W. Wang, Y. Qu, B. Yang, X. Liu, W. Su, Lactate oxidation in pyrite suspension: A Fenton-like process in situ generating H2O2, Chemosphere, 86, 2012, 376–382.
  • M. S. F. Santos, A. Alves, L. M. Madeira, Paraquat removal from water by oxidation with Fenton’s reagent, Chem. Eng. J., 175, 2011, 279
  • F. Li, T.S.Y. Choong, S. Soltani, L.C. Abdullah, M. Jamil, S.N. Ain, Kinetic Study of Fenton-Like Degradation of Methylene Blue in Aqueous Solution Using Calcium Peroxide. Pertanika J Sci Technol, 30(2), 2022, 1087 – 1102.
  • J. E. Kumar, T. Mulai, A. Tripathy, Behnajady-Modirshahla-Ghanbary kinetic model for degradation of Azo dye using Fenton oxidation process: A mini review, Next Res, 1(2), 2024, 100047.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Kimya (Diğer)
Bölüm Research Articles
Yazarlar

Filiz Nuran Acar 0000-0002-8743-4666

Salih Bingöl 0009-0003-9197-5355

İbrahim Cengiz 0000-0003-3171-6629

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 27 Mayıs 2025
Kabul Tarihi 20 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 3

Kaynak Göster

APA Acar, F. N., Bingöl, S., & Cengiz, İ. (2025). Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation. Turkish Journal of Analytical Chemistry, 7(3), 394-403. https://doi.org/10.51435/turkjac.1707754
AMA Acar FN, Bingöl S, Cengiz İ. Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation. TurkJAC. Eylül 2025;7(3):394-403. doi:10.51435/turkjac.1707754
Chicago Acar, Filiz Nuran, Salih Bingöl, ve İbrahim Cengiz. “Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation”. Turkish Journal of Analytical Chemistry 7, sy. 3 (Eylül 2025): 394-403. https://doi.org/10.51435/turkjac.1707754.
EndNote Acar FN, Bingöl S, Cengiz İ (01 Eylül 2025) Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation. Turkish Journal of Analytical Chemistry 7 3 394–403.
IEEE F. N. Acar, S. Bingöl, ve İ. Cengiz, “Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation”, TurkJAC, c. 7, sy. 3, ss. 394–403, 2025, doi: 10.51435/turkjac.1707754.
ISNAD Acar, Filiz Nuran vd. “Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation”. Turkish Journal of Analytical Chemistry 7/3 (Eylül2025), 394-403. https://doi.org/10.51435/turkjac.1707754.
JAMA Acar FN, Bingöl S, Cengiz İ. Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation. TurkJAC. 2025;7:394–403.
MLA Acar, Filiz Nuran vd. “Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation”. Turkish Journal of Analytical Chemistry, c. 7, sy. 3, 2025, ss. 394-03, doi:10.51435/turkjac.1707754.
Vancouver Acar FN, Bingöl S, Cengiz İ. Determination of the Efficiency of Fenton-Like Process in the Presence of Zero-Valent Catalyst: Reactive Dye Degradation. TurkJAC. 2025;7(3):394-403.