Araştırma Makalesi
BibTex RIS Kaynak Göster

DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER

Yıl 2024, Cilt: 8 Sayı: 1, 42 - 52, 30.04.2024

Öz

This study was carried out to determine the changes in air-dry density and fiber-parallel compressive strength of basalt fiber-reinforced polymer (BFRP) woven fabrics (WF) and plaster mesh (PSM) reinforced sessile oak laminated timber. One component polyurethane (PUR) glue was used as the adhesive. The BFRPWF abd PSM were added as a reinforcement layer between wood veneers to improve properties of laminated composite material. The BFRPWF and PSM were tested in three different locations non-reinforced laminated oak lumber (LOL), reinforced laminated oak lumber with the BFRPWF (LOL- BFRPWF), and reinforced laminated oak lumber with the PSM (LOL-PSM). Tests were performed on the LOL, LOL- BFRPWF, and LOL-PSM to investigate their air-dry density (δl2), and compression strength (σb). The test results showed that the reinforcement process increased both δl2 and σb parallel to the grains. The LOL-BFRPWF samples give better results than PSM and control samples. Accordingly, the samples of LOL-BFRPWF and LOL-PSM samples have the potential to serve as viable options for both furniture and building materials.

Etik Beyan

This study does not require any ethics committee approval

Kaynakça

  • Bozkurt, A.Y., & Erdin, N. (2000). Wood Anatomy. Istanbul University publication number: 4263, Faculty of forestry publication number: 466, Istanbul, Turkey.
  • Castelo, A., Correia, J. R., Cabral-Fonseca, S., & de Brito, J. (2020). Inspection, diagnosis and rehabilitation system for all-fibre-reinforced polymer constructions. Construction and Building Materials, 253, 119160. https://doi.org/10.1016/j.conbuildmat.2020.119160
  • de la Rosa, P., González, M. D. L. N., Prieto, M. I., & Gómez, E. (2021). Compressive behavior of pieces of wood reinforced with fabrics composed of carbon fiber and basalt fiber. Applied Sciences, 11(6), 2460. https://doi.org/10.3390/app11062460
  • Dong, J.F., Yuan, S.C., Wang, Q.Y., & Liang, W. (2015a). Infuence of fractured wood texture on structural behaviour of timber columns with fibre reinforced polymer reinforcement. Materials Research Innovations, 19, 546–550. https://doi.org/10. 1179/1432891714z.0000000001149
  • Dong, J. F., Jia, P., Yuan, S. C., & Wang, Q. Y. (2015b). Compressive behaviours of square timber columns reinforced by partial wrapping of FRP sheets. Materials Research Innovations, 19(1), 465-468. https://doi.org/10.1179/1432891715Z.0000000001593
  • Fang, H., Bai, Y., Liu, W., Qi, Y., & Wang, J. (2019). Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments. Composites Part B: Engineering, 164, 129-143. https://doi.org/10.1016/j.compositesb.2018.11.047
  • Fiore, V., Di Bella, G., & Valenza, A. (2011). Glass–basalt/epoxy hybrid composites for marine applications. Materials and Design, 32 (4), 2091-2099. https://doi.org/10.1016/j.matdes.2010.11.043
  • Gao, Y., Zhou, Y., Zhou, J., Kong, X., Zhang, B., Liu, S., & Jin, F. (2020). Blast responses of one-way sea-sand seawater concrete slabs reinforced with BFRP bars. Construction and Building Materials, 232, 117254. https://doi.org/10.1016/j.conbuildmat.2019.117254
  • Gattas, J. M., O'Dwyer, M. L., Heitzmann, M. T., Fernando, D., & Teng, J. G. (2018). Folded hybrid FRP-timber sections: concept, geometric design and experimental behaviour. Thin-Walled Structures, 122, 182-192. https://doi.org/10.1016/j.tws.2017.10.007
  • Kandare, E., Luangtriratana, P., & Kandola, B. K. (2014). Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Composites Part B: Engineering, 56, 602-610. https://doi.org/10.1016/j.compositesb.2013.08.090
  • Liang, R., & Hota, G. (2021). Development and evaluation of load-bearing fiber reinforced polymer composite panel systems with tongue and groove joints. Sustainable structures, 1(2),1-22. https://doi.org/10.54113/j.sust.2021.000008
  • Li, H., Li, H., Hong, C., Xiong, Z., Lorenzo, R., Corbi, I., & Corbi, O. (2021). Experimental investigation on axial compression behavior of laminated bamboo lumber short columns confined with CFRP. Composites Part A: Applied Science and Manufacturing, 150, 106605. https://doi.org/10.1016/j.compositesa.2021.106605
  • Lv, Q., Ding, Y., & Liu, Y. (2019). Study of the bond behaviour between basalt fibre-reinforced polymer bar/sheet and bamboo engineering materials. Advances in Structural Engineering, 22(14), 3121-3133. https://doi.org/10.1177/1369433219858725
  • Liu, J., Peng, Q., Li, W., & Wang, J. (2023). Mechanical properties of BFRP-reinforced glued laminated wood hollow round column under eccentric pressure. In Structures, 51, 1140-1152. https://doi.org/10.1016/j.istruc.2023.03.095
  • Manikandan, V., Jappes, J. W., Kumar, S. S., & Amuthakkannan, P. J. C. P. B. E. (2012). Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Composites Part B: Engineering, 43(2), 812-818. https://doi.org/10.1016/j.compositesb.2011.11.009
  • Najm, H., Secaras, J., & Balaguru, P. (2007). Compression tests of circular timber column confined with carbon fibers using inorganic matrix. Journal of Materials in Civil Engineering, 19(2), 198-204. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(198)
  • O'Callaghan, R. B., Lacroix, D., & Kim, K. E. (2022). Experimental investigation of the compressive behaviour of GFRP wrapped spruce-pine-fir square timber columns. Engineering Structures, 252, 113618. https://doi.org/10.1016/j.engstruct.2021.113618
  • Ouyang, L. J., Chai, M. X., Song, J., Hu, L. L., & Gao, W. Y. (2021). Repair of thermally damaged concrete cylinders with basalt fiber-reinforced polymer jackets. Journal of Building Engineering, 44, 102673. https://doi.org/10.1016/j.jobe.2021.102673
  • Raftery, G. M., & Harte, A. M. (2011). Low-grade glued laminated timber reinforced with FRP plate. Composites Part B: Engineering, 42(4), 724-735. https://doi.org/10.1016/j.compositesb.2011.01.029
  • Siha, A., Zhou, C., & Yang, L. (2021). Experimental study on axial compression behavior on circular timber columns strengthened with CFRP strips and near-surface mounted steel bars. Journal of Structural Engineering, 147(3). https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0002931#:~:text=https%3A//doi.org/10.1061/(ASCE)ST.1943%2D541X.0002931
  • Song, J., Gao, W. Y., Ouyang, L. J., Zeng, J. J., Yang, J., & Liu, W. D. (2021). Compressive behavior of heat-damaged square concrete prisms confined with basalt fiber-reinforced polymer jackets. Engineering Structures, 242, 112504. https://doi.org/10.1016/j.engstruct.2021.112504
  • Subagia, I. A., Kim, Y., Tijing, L. D., Kim, C. S., & Shon, H. K. (2014). Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Composites Part B: Engineering, 58, 251-258. https://doi.org/10.1016/j.compositesb.2013.10.027
  • Taheri, F., Nagaraj, M., & Khosravi, P. (2009). Buckling response of gluelaminated columns reinforced with fber-reinforced plastic sheets. Composite Structure, 88,481–490. https://doi.org/10.1016/j.compstruct.2008.05. 013
  • TS 5497 EN 408, 2006: Timber structures-structural and glued laminated timber-determination of some physical and mechanical properties, Institute of Turkish Standards, Ankara, Turkey.
  • TS 2472, 1976: Wood – determination of density for physical and mechanical tests. Institute of Turkish Standards, Ankara, Turkey.
  • TS 2595, 1976: Wood-determination of ultimate stress in compression parallel to grain, Institute of Turkish Standards, Ankara, Turkey.
  • Wang, X., Zhou, A., Zhao, L., & Chui, Y. H. (2019). Mechanical properties of wood columns with rectangular hollow cross section. Construction and Building Materials, 214, 133-142. https://doi.org/10.1016/j.conbuildmat.2019.04.119
  • Wang, Z., Li, H., Fei, B., Ashraf, M., Xiong, Z., Lorenzo, R., & Fang, C. (2021). Axial compressive performance of laminated bamboo column with aramid fiber reinforced polymer. Composite Structures, 258, 113398. https://doi.org/10.1016/j.compstruct.2020.113398
  • Wu, X. (2020). Research progress on application of basalt fiber in civil engineering. Bulletion of The Chinese Ceramic Society, 39, 1043-1056.
  • Xiong, X. Y., & Su, Z. Y. (2015). Experimental study and theoretical analysis of carbon fibre-reinforced polymer strengthening timber pier column. Materials Research Innovations, 19(5), 1246-125 https://doi.org/10.1179/1432891714Z.0000000001288
  • Yang, L., Li, X., Fang, H., Liu, W., Hong, J., Hui, D., & Gaff, M. (2021). Compressive behaviour of wood-filled GFRP square columns with lattice-web reinforcements. Construction and Building Materials, 310, 125129. https://doi.org/10.1016/j.conbuildmat.2021.125129
  • Zhang, W., Song, X., Gu, X., & Tang, H. (2012). Compressive behavior of longitudinally cracked timber columns retrofitted using FRP sheets. Journal of Structural Engineering, 138(1), 90-98. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000423
  • Zhang, Y., Wang, J., Lin, J., Zhang, F., & Yan, X. (2021). Crushing mechanical responses of natural wood columns and wood-filled composite columns. Engineering Failure Analysis, 124, 105358. https://doi.org/10.1016/j.engfailanal.2021.105358
  • Zhu, Y. M., Long, T., Hou, M., & Wang, Q. (2013). FRP reinforced short wood columns under axial compressive load. Advanced Materials Research, 671, 484-487. https://doi.org/10.4028/www.scientific.net/AMR.671-674.484

BAZALT KUMAŞ VE PLASTER NET İLE GÜÇLENDİRİLMİŞ LAMİNE MEŞE KERESTENİN HAVA KURUSU YOĞUNLUK VE LİFLERE PARALEL BASINÇ DİRENCİNİN BELİRLENMESİ

Yıl 2024, Cilt: 8 Sayı: 1, 42 - 52, 30.04.2024

Öz

Bu çalışma, bazalt kumaş (BFRP) ve plaster mesh (PSM) güçlendirilmiş sapsız meşe lamine kerestenin hava kurusu yoğunluk ve liflere paralel basınç direncindeki değişimlerin belirlenmesi amacıyla yapılmıştır. Yapıştırıcı olarak tek komponentli poliüretan (PUR) tutkalı kullanılmıştır. BFRPWF ve PSM, lamine kompozit malzemenin mekanik özelliklerini geliştirmek için ahşap kaplamalar arasına takviye katmanı olarak eklenmiştir. BFRPWF ve PSM, takviyesiz lamine meşe kereste (LOL), BFRPWF (LOL-BFRPWF) ile güçlendirilmiş lamine meşe kereste ve PSM (LOL-PSM) ile güçlendirilmiş lamine meşe kereste üç farklı lokasyonda test yapılmıştır. Hava kuru yoğunluk (δl2) ve liflere paralel basınç direncini (σb) araştırmak için LOL, LOL-BFRPWF ve LOL-PSM üzerinde testler yapılmıştır. Test sonuçları, güçlendirme işleminin hem δl2 hem de σb'yi arttırdığı göstermiştir. LOL-BFRPWF örnekleri PSM ve kontrol örneklerinden daha iyi sonuçlar elde edilmiştir. Buna göre LOL-BFRPWF ve LOL-PSM örneklerinin örnekleri, hem mobilya hem de yapı malzemeleri için uygun seçenekler olarak hizmet etme potansiyeline sahip olduğu söylenebilir.

Kaynakça

  • Bozkurt, A.Y., & Erdin, N. (2000). Wood Anatomy. Istanbul University publication number: 4263, Faculty of forestry publication number: 466, Istanbul, Turkey.
  • Castelo, A., Correia, J. R., Cabral-Fonseca, S., & de Brito, J. (2020). Inspection, diagnosis and rehabilitation system for all-fibre-reinforced polymer constructions. Construction and Building Materials, 253, 119160. https://doi.org/10.1016/j.conbuildmat.2020.119160
  • de la Rosa, P., González, M. D. L. N., Prieto, M. I., & Gómez, E. (2021). Compressive behavior of pieces of wood reinforced with fabrics composed of carbon fiber and basalt fiber. Applied Sciences, 11(6), 2460. https://doi.org/10.3390/app11062460
  • Dong, J.F., Yuan, S.C., Wang, Q.Y., & Liang, W. (2015a). Infuence of fractured wood texture on structural behaviour of timber columns with fibre reinforced polymer reinforcement. Materials Research Innovations, 19, 546–550. https://doi.org/10. 1179/1432891714z.0000000001149
  • Dong, J. F., Jia, P., Yuan, S. C., & Wang, Q. Y. (2015b). Compressive behaviours of square timber columns reinforced by partial wrapping of FRP sheets. Materials Research Innovations, 19(1), 465-468. https://doi.org/10.1179/1432891715Z.0000000001593
  • Fang, H., Bai, Y., Liu, W., Qi, Y., & Wang, J. (2019). Connections and structural applications of fibre reinforced polymer composites for civil infrastructure in aggressive environments. Composites Part B: Engineering, 164, 129-143. https://doi.org/10.1016/j.compositesb.2018.11.047
  • Fiore, V., Di Bella, G., & Valenza, A. (2011). Glass–basalt/epoxy hybrid composites for marine applications. Materials and Design, 32 (4), 2091-2099. https://doi.org/10.1016/j.matdes.2010.11.043
  • Gao, Y., Zhou, Y., Zhou, J., Kong, X., Zhang, B., Liu, S., & Jin, F. (2020). Blast responses of one-way sea-sand seawater concrete slabs reinforced with BFRP bars. Construction and Building Materials, 232, 117254. https://doi.org/10.1016/j.conbuildmat.2019.117254
  • Gattas, J. M., O'Dwyer, M. L., Heitzmann, M. T., Fernando, D., & Teng, J. G. (2018). Folded hybrid FRP-timber sections: concept, geometric design and experimental behaviour. Thin-Walled Structures, 122, 182-192. https://doi.org/10.1016/j.tws.2017.10.007
  • Kandare, E., Luangtriratana, P., & Kandola, B. K. (2014). Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Composites Part B: Engineering, 56, 602-610. https://doi.org/10.1016/j.compositesb.2013.08.090
  • Liang, R., & Hota, G. (2021). Development and evaluation of load-bearing fiber reinforced polymer composite panel systems with tongue and groove joints. Sustainable structures, 1(2),1-22. https://doi.org/10.54113/j.sust.2021.000008
  • Li, H., Li, H., Hong, C., Xiong, Z., Lorenzo, R., Corbi, I., & Corbi, O. (2021). Experimental investigation on axial compression behavior of laminated bamboo lumber short columns confined with CFRP. Composites Part A: Applied Science and Manufacturing, 150, 106605. https://doi.org/10.1016/j.compositesa.2021.106605
  • Lv, Q., Ding, Y., & Liu, Y. (2019). Study of the bond behaviour between basalt fibre-reinforced polymer bar/sheet and bamboo engineering materials. Advances in Structural Engineering, 22(14), 3121-3133. https://doi.org/10.1177/1369433219858725
  • Liu, J., Peng, Q., Li, W., & Wang, J. (2023). Mechanical properties of BFRP-reinforced glued laminated wood hollow round column under eccentric pressure. In Structures, 51, 1140-1152. https://doi.org/10.1016/j.istruc.2023.03.095
  • Manikandan, V., Jappes, J. W., Kumar, S. S., & Amuthakkannan, P. J. C. P. B. E. (2012). Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Composites Part B: Engineering, 43(2), 812-818. https://doi.org/10.1016/j.compositesb.2011.11.009
  • Najm, H., Secaras, J., & Balaguru, P. (2007). Compression tests of circular timber column confined with carbon fibers using inorganic matrix. Journal of Materials in Civil Engineering, 19(2), 198-204. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(198)
  • O'Callaghan, R. B., Lacroix, D., & Kim, K. E. (2022). Experimental investigation of the compressive behaviour of GFRP wrapped spruce-pine-fir square timber columns. Engineering Structures, 252, 113618. https://doi.org/10.1016/j.engstruct.2021.113618
  • Ouyang, L. J., Chai, M. X., Song, J., Hu, L. L., & Gao, W. Y. (2021). Repair of thermally damaged concrete cylinders with basalt fiber-reinforced polymer jackets. Journal of Building Engineering, 44, 102673. https://doi.org/10.1016/j.jobe.2021.102673
  • Raftery, G. M., & Harte, A. M. (2011). Low-grade glued laminated timber reinforced with FRP plate. Composites Part B: Engineering, 42(4), 724-735. https://doi.org/10.1016/j.compositesb.2011.01.029
  • Siha, A., Zhou, C., & Yang, L. (2021). Experimental study on axial compression behavior on circular timber columns strengthened with CFRP strips and near-surface mounted steel bars. Journal of Structural Engineering, 147(3). https://ascelibrary.org/doi/10.1061/%28ASCE%29ST.1943-541X.0002931#:~:text=https%3A//doi.org/10.1061/(ASCE)ST.1943%2D541X.0002931
  • Song, J., Gao, W. Y., Ouyang, L. J., Zeng, J. J., Yang, J., & Liu, W. D. (2021). Compressive behavior of heat-damaged square concrete prisms confined with basalt fiber-reinforced polymer jackets. Engineering Structures, 242, 112504. https://doi.org/10.1016/j.engstruct.2021.112504
  • Subagia, I. A., Kim, Y., Tijing, L. D., Kim, C. S., & Shon, H. K. (2014). Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Composites Part B: Engineering, 58, 251-258. https://doi.org/10.1016/j.compositesb.2013.10.027
  • Taheri, F., Nagaraj, M., & Khosravi, P. (2009). Buckling response of gluelaminated columns reinforced with fber-reinforced plastic sheets. Composite Structure, 88,481–490. https://doi.org/10.1016/j.compstruct.2008.05. 013
  • TS 5497 EN 408, 2006: Timber structures-structural and glued laminated timber-determination of some physical and mechanical properties, Institute of Turkish Standards, Ankara, Turkey.
  • TS 2472, 1976: Wood – determination of density for physical and mechanical tests. Institute of Turkish Standards, Ankara, Turkey.
  • TS 2595, 1976: Wood-determination of ultimate stress in compression parallel to grain, Institute of Turkish Standards, Ankara, Turkey.
  • Wang, X., Zhou, A., Zhao, L., & Chui, Y. H. (2019). Mechanical properties of wood columns with rectangular hollow cross section. Construction and Building Materials, 214, 133-142. https://doi.org/10.1016/j.conbuildmat.2019.04.119
  • Wang, Z., Li, H., Fei, B., Ashraf, M., Xiong, Z., Lorenzo, R., & Fang, C. (2021). Axial compressive performance of laminated bamboo column with aramid fiber reinforced polymer. Composite Structures, 258, 113398. https://doi.org/10.1016/j.compstruct.2020.113398
  • Wu, X. (2020). Research progress on application of basalt fiber in civil engineering. Bulletion of The Chinese Ceramic Society, 39, 1043-1056.
  • Xiong, X. Y., & Su, Z. Y. (2015). Experimental study and theoretical analysis of carbon fibre-reinforced polymer strengthening timber pier column. Materials Research Innovations, 19(5), 1246-125 https://doi.org/10.1179/1432891714Z.0000000001288
  • Yang, L., Li, X., Fang, H., Liu, W., Hong, J., Hui, D., & Gaff, M. (2021). Compressive behaviour of wood-filled GFRP square columns with lattice-web reinforcements. Construction and Building Materials, 310, 125129. https://doi.org/10.1016/j.conbuildmat.2021.125129
  • Zhang, W., Song, X., Gu, X., & Tang, H. (2012). Compressive behavior of longitudinally cracked timber columns retrofitted using FRP sheets. Journal of Structural Engineering, 138(1), 90-98. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000423
  • Zhang, Y., Wang, J., Lin, J., Zhang, F., & Yan, X. (2021). Crushing mechanical responses of natural wood columns and wood-filled composite columns. Engineering Failure Analysis, 124, 105358. https://doi.org/10.1016/j.engfailanal.2021.105358
  • Zhu, Y. M., Long, T., Hou, M., & Wang, Q. (2013). FRP reinforced short wood columns under axial compressive load. Advanced Materials Research, 671, 484-487. https://doi.org/10.4028/www.scientific.net/AMR.671-674.484
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kereste, Hamur ve Kağıt
Bölüm Araştırma Makalesi
Yazarlar

Abdurrahman Karaman 0000-0002-5925-7519

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 4 Ocak 2024
Kabul Tarihi 5 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 8 Sayı: 1

Kaynak Göster

APA Karaman, A. (2024). DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER. Turkish Journal of Forest Science, 8(1), 42-52.
AMA Karaman A. DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER. Turk J For Sci. Nisan 2024;8(1):42-52.
Chicago Karaman, Abdurrahman. “DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER”. Turkish Journal of Forest Science 8, sy. 1 (Nisan 2024): 42-52.
EndNote Karaman A (01 Nisan 2024) DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER. Turkish Journal of Forest Science 8 1 42–52.
IEEE A. Karaman, “DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER”, Turk J For Sci, c. 8, sy. 1, ss. 42–52, 2024.
ISNAD Karaman, Abdurrahman. “DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER”. Turkish Journal of Forest Science 8/1 (Nisan 2024), 42-52.
JAMA Karaman A. DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER. Turk J For Sci. 2024;8:42–52.
MLA Karaman, Abdurrahman. “DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER”. Turkish Journal of Forest Science, c. 8, sy. 1, 2024, ss. 42-52.
Vancouver Karaman A. DETERMINATION OF AIR-DRY DENSITY AND COMPRESSION STRENGTH PARALLEL TO THE GRAINS OF BASALT FIBER-REINFORCED POLYMER (BFRP) WOVEN FABRICS AND PLASTER MESH (PSM) REINFORCED GLUED LAMINATED OAK LUMBER. Turk J For Sci. 2024;8(1):42-5.