Detection of Equivalent Water Thickness Changes with GRACE/GRACE-FO Satellites on The Caspian Sea Between 2002-2021
Yıl 2022,
, 53 - 61, 30.12.2022
Miray Nil Makineci
,
Serkan Doğanalp
Öz
The Caspian Sea is the world's largest inland water body, studied for years. The Caspian Sea, in which water level changes were examined with the data acquired from tide gauges in the past years, is also observing using altimeter satellite data with the improvement of satellite programs. In addition, water mass changes can be investigated with the GRACE and GRACE Follow-On (GRACE-FO) satellites, which can capture mass changes on the earth. Within the scope of the study, the Equivalent Water Thickness (EWT) changes in and around the Caspian Sea were examined using Level-2 Release-06 data obtained from the GRACE/GRACE-FO satellites with a long-term data set covering the years 2002-2021. While making the calculations, a long-term average model was created, and the average value of each year was subtracted from the average model. Center for Space Research (CSR) was preferred as the data center, and the Decorrelation Filtering (DDK) technique was used to eliminate correlation-based errors. Also, the results have been illustrated with a map, and the data obtained has been given in a table. In addition, EWT changes according to years were calculated by selecting a point in the region where EWT changes were observed intensely. When the results are analyzed, negative EWT changes have been detected that have increased rapidly in the last few years. Negative values of EWT changes mean that the water body of that area is decreasing.
Teşekkür
The authors would like to thank ICGEM, NASA, and CSR data centers for all their contributions to the creation of this study.
Kaynakça
- Atlı, M. N. (2022). Su Kütle Değişimlerinin Farklı Uydu ve Model Verileri ile Belirlenmesi. Master’s Thesis, Konya Technical University, Konya, 121p (in Turkish).
- Atayer, E. S. (2012). Yeryuvarı Gravite Alanının Aylık GRACE Çözümleri ile İzlenmesi ve Duyarlılığı Üzerine Bir İnceleme. Master’s Thesis, Yıldız Technical University, İstanbul, 122p (in Turkish).
- Bland, J. M., & Altman, D. G. (1996). Statistics notes: measurement error. BMJ. 312 (7047): 1654. doi:10.1136/bmj.312.7047.1654.
- Cazenave, A., & Chen, J. (2010). Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth and Planetary Science Letters, 298(3-4), 263-274.
- Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J. F., & Safarov, E. S. (2017a). Long‐term Caspian Sea level change. Geophysical Research Letters, 44(13), 6993-7001.
- Chen, J. L., Wilson, C. R., Tapley, B. D., Save, H., & Cretaux, J. F. (2017b). Long‐term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research: Solid Earth, 122(3), 2274-2290.
- Cheng, M., & Tapley, B. D. (2004). Variations in the Earth's oblateness during the past 28 years. Journal of Geophysical Research: Solid Earth, 109(B9).
- Elguindi, N., & Giorgi, F. (2006). Projected changes in the Caspian Sea level for the 21st century based on the latest AOGCM simulations. Geophysical research letters, 33(8).
- Hofmann, B., & Moritz, H. (2006). Physical geodesy (Second Corrected Edition). Springer Science & Business Media.
- Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., Bettadpur S.V., Byun, S.H.,... & Yuan, D. N. (2020). Extending the global mass change data record: GRACE Follow‐On instrument and science data performance. Geophysical Research Letters, 47(12), e2020GL088306.
- Lebedev, S. A., & Kostianoy, A. G. (2008). Integrated use of satellite altimetry in the investigation of the meteorological, hydrological, and hydrodynamic regime of the Caspian Sea. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(1-2), 7.
- Liu, X. (2008). Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach. PhD Thesis Netherlands Geodectic Commission, Publication on Geodesy 68, TU Delft, Delft, The Netherlands 226p (in English).
- Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12), 30205-30229.
- Wahr, J., Swenson, S., & Velicogna, I. (2006). Accuracy of GRACE mass estimates. Geophysical Research Letters, 33(6).
- Wahr, J. (2007). Time-variable gravity from satellites. Treatise on geophysics, 3, 213-237.
- URL-1: https://gracefo.jpl.nasa.gov/resources/86/grace-fo-3d-model/ [Access Date: 01.08.2022]
GRACE/GRACE-FO Uydulari ile Hazar Denizi 2002-2021 Yılları Arasındaki Eşdeğer Su Kalınlığı Değişimlerinin Tespiti
Yıl 2022,
, 53 - 61, 30.12.2022
Miray Nil Makineci
,
Serkan Doğanalp
Öz
Hazar Denizi yıllardır üzerinde çalışmalar yapılan Dünya’nın en büyük iç su kütlesidir. Geçmiş yıllarda mareograf istasyonlarından alınan veriler ile su seviyesi değişimlerinin incelendiği Hazar Denizi, uydu programlarının gelişmesi ile altimetre uydu verileri kullanılarak da gözlemlenmektedir. Ayrıca yeryuvarı üzerindeki kütlesel değişimleri yakalayabilen GRACE ve GRACE Follow-On (GRACE-FO) uyduları ile de su kütlesi değişimleri araştırılabilmektedir. Çalışma kapsamında Hazar Denizi ve çevresinde gerçekleşen eş değer su kalınlığı (EWT) değişimleri GRACE/GRACE-FO uydularından elde edilen Seviye-2 Sürüm-06 verileri yardımıyla incelenmiş ve 2002-2021 yıllarını kapsayan uzun dönemli veri seti elde edilmiştir. Hesaplamalar yapılırken uzun dönemli ortalama bir model oluşturulmuş ve her bir yılın ortalama değeri oluşturulan ortalama modelden çıkarılmıştır. Veri merkezi olarak CSR (Center for Space Research) tercih edilmiş ve korelasyon bazlı hataların ortadan kaldırılması amaçlı DDK (Decorrelation Filter) filtreleme tekniği kullanılmıştır. Sonuçlar haritalandırılmış olup elde edilen veriler tablo şeklinde verilmiştir. Ayrıca EWT değişimlerinin yoğun şekilde gerçekleştiği gözlemlenen bölge içerisinde bir nokta seçilerek yıllara göre EWT değişimleri hesaplanmıştır. Sonuçlar analiz edildiğinde son birkaç yıldır hızla artmakta olan negatif yönlü EWT değişimleri tespit edilmiştir. EWT değişikliklerinin negatif değerleri, o bölgenin su kütlesinin azaldığı anlamına gelir.
Kaynakça
- Atlı, M. N. (2022). Su Kütle Değişimlerinin Farklı Uydu ve Model Verileri ile Belirlenmesi. Master’s Thesis, Konya Technical University, Konya, 121p (in Turkish).
- Atayer, E. S. (2012). Yeryuvarı Gravite Alanının Aylık GRACE Çözümleri ile İzlenmesi ve Duyarlılığı Üzerine Bir İnceleme. Master’s Thesis, Yıldız Technical University, İstanbul, 122p (in Turkish).
- Bland, J. M., & Altman, D. G. (1996). Statistics notes: measurement error. BMJ. 312 (7047): 1654. doi:10.1136/bmj.312.7047.1654.
- Cazenave, A., & Chen, J. (2010). Time-variable gravity from space and present-day mass redistribution in the Earth system. Earth and Planetary Science Letters, 298(3-4), 263-274.
- Chen, J. L., Pekker, T., Wilson, C. R., Tapley, B. D., Kostianoy, A. G., Cretaux, J. F., & Safarov, E. S. (2017a). Long‐term Caspian Sea level change. Geophysical Research Letters, 44(13), 6993-7001.
- Chen, J. L., Wilson, C. R., Tapley, B. D., Save, H., & Cretaux, J. F. (2017b). Long‐term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements. Journal of Geophysical Research: Solid Earth, 122(3), 2274-2290.
- Cheng, M., & Tapley, B. D. (2004). Variations in the Earth's oblateness during the past 28 years. Journal of Geophysical Research: Solid Earth, 109(B9).
- Elguindi, N., & Giorgi, F. (2006). Projected changes in the Caspian Sea level for the 21st century based on the latest AOGCM simulations. Geophysical research letters, 33(8).
- Hofmann, B., & Moritz, H. (2006). Physical geodesy (Second Corrected Edition). Springer Science & Business Media.
- Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T., Bertiger, W. I., Bettadpur S.V., Byun, S.H.,... & Yuan, D. N. (2020). Extending the global mass change data record: GRACE Follow‐On instrument and science data performance. Geophysical Research Letters, 47(12), e2020GL088306.
- Lebedev, S. A., & Kostianoy, A. G. (2008). Integrated use of satellite altimetry in the investigation of the meteorological, hydrological, and hydrodynamic regime of the Caspian Sea. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 19(1-2), 7.
- Liu, X. (2008). Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach. PhD Thesis Netherlands Geodectic Commission, Publication on Geodesy 68, TU Delft, Delft, The Netherlands 226p (in English).
- Wahr, J., Molenaar, M., & Bryan, F. (1998). Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12), 30205-30229.
- Wahr, J., Swenson, S., & Velicogna, I. (2006). Accuracy of GRACE mass estimates. Geophysical Research Letters, 33(6).
- Wahr, J. (2007). Time-variable gravity from satellites. Treatise on geophysics, 3, 213-237.
- URL-1: https://gracefo.jpl.nasa.gov/resources/86/grace-fo-3d-model/ [Access Date: 01.08.2022]