BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 9 Sayı: 3, 658 - 665, 01.09.2019

Öz

Kaynakça

  • Aslan, E., (2014), The Average Lower Connectivity of Graphs, Journal of Applied Mathematics, 2014, ID:807834, 4 Pages.
  • Ayta¸c, A. and Odabas, Z.N., (2011), Residual Closeness of Wheels and Related Networks, Interna- tional Journal of Foundations of Computer Science, 22(5), pp. 1229-1240.
  • Ayta¸c, A. and Turaci, T., (2011), Vertex Vulnerability Parameter of Gear Graphs, International Journal of Foundations of Computer Science, 22(5), pp. 1187-1195.
  • Ayta¸c, A., Turaci, T. and Odabas, Z.N., (2013), On The Bondage Number of Middle Graphs, Math- ematical Notes, 93(6), pp. 803-811.
  • Ayta¸c, A., Odabas, Z.N. and Turaci, T.,(2011), The Bondage Number for Some Graphs, Comptes Rendus de Lacademie Bulgare des Sciences, 64(7), pp. 925-930.
  • Ayta¸c, V., (2012), Average Lower Domination Number in Graphs, Comptes Rendus de Lacademie Bulgare des Sciences, 65(12), pp. 1665-1674.
  • Barefoot, C.A., Entringer, R. and Swart, H., (1987), Vulnerability in graphs-a comparative survey, J. Combin. Math. Combin. Comput., 1, pp. 13-22.
  • Bauer, D., Harary, F., Nieminen, J. and Suffel C. L., (1983), Domination alteration sets in graph, Discrete Math., 47, pp. 153-161.
  • Beineke, L.W., Oellermann, O.R. and Pippert, R.E., (2002), The Average Connectivity of a Graph, Disc. Math., 252(1-3), pp. 31-45.
  • Blidia, M., Chellali, M. and Maffray, F., (2005), On Average Lower Independence and Domination Number in Graphs, Disc. Math., 295, pp. 1-11.
  • Chellali, M., (2006), Bounds on the 2-Domination Number in Cactus Graps, Opuscula Mathematica, 26(1), pp. 5-12.
  • Chvatal, V., (1973), Tough graphs and Hamiltonian circuits, Discrete Math., 5, pp. 215-228.
  • Fink, J.F. and Jacobson M.S., (1985), n-domination in graphs, in: Alavi Y. and Schwenk A. J.(eds), Graph Theory with Applications to Algorithms and Computer Science, NewYork, Wiley, pp. 283-300.
  • Frank, H. and Frisch, I.T., (1970), Analysis and design of survivable Networks, IEEE Transactions on Communications Technology, 18(5), pp. 501-519.
  • Henning, M.A. and Oellermann, O.R., (2004), The Average Connectivity of a Digraph, Discrete App. Math., 140(1-3), pp. 143-153.
  • Henning, M.A., (2004), Trees with Equal Average Domination and Independent Domination Numbers, Ars Combin., 71, pp. 305-318.
  • Javaid, I. and Shokat, S., (2008), On the Partition Dimension of Some Wheel Related Graphs, Journal of Prime Research in Mathematics, 4, pp. 154-164.
  • Krzywkowski, M., (2013), 2-bondage in graphs, International Journal of Computer Mathematics, 90(7), pp. 1358-1365.
  • Mishkovski, I., Biey, M. and Kocarev, L., (2011), Vulnerability of complex Networks, Commun. Non- linear Sci Numer Simulat., 16, pp. 341-349.
  • Newport, K.T. and Varshney, P.K., (1991), Design of survivable communication networks under per- formance constraints, IEEE Transactions on Reliability, 40, pp. 433-440.
  • Tuncel, G.H., Turaci, T. and Coskun, B., (2015), The Average Lower Domination Number and Some Results of Complementary Prisms and Graph Join, Journal of Advanced Research in Applied Math- ematics, 7(1), pp. 52-61.
  • Turaci, T. and Okten, M., (2015), Vulnerability Of Mycielski Graphs via Residual Closeness, Ars Combinatoria, 118, pp. 419-427.
  • Turaci, T., (2016), On The Average Lower Bondage Number a Graph, RAIRO-Operations Research, 50(4-5), pp. 1003-1012.

ON THE AVERAGE LOWER 2-DOMINATION NUMBER OF A GRAPH

Yıl 2019, Cilt: 9 Sayı: 3, 658 - 665, 01.09.2019

Öz

Computer scientists and network scientists want a speedy, reliable, and nonstop communication. In a communication network, the vulnerability measures the resistance of the network to disruption of operation after the failure of certain stationsor communication links. The average lower 2-domination number of a graph G relative to a vertex v is the cardinality of a minimum 2-dominating set in G containingv. Consider the graph G modeling a network. The average lower 2-domination number of G, denoted as γ2av G , is a new measure of the network vulnerability, given byγ2av G =defined and examined, also the average lower 2-domination number of well known graphfamilies are calculated. Then upper and lower bounds are determined and exact formulasare found for the average lower 2-domination number of any graph G

Kaynakça

  • Aslan, E., (2014), The Average Lower Connectivity of Graphs, Journal of Applied Mathematics, 2014, ID:807834, 4 Pages.
  • Ayta¸c, A. and Odabas, Z.N., (2011), Residual Closeness of Wheels and Related Networks, Interna- tional Journal of Foundations of Computer Science, 22(5), pp. 1229-1240.
  • Ayta¸c, A. and Turaci, T., (2011), Vertex Vulnerability Parameter of Gear Graphs, International Journal of Foundations of Computer Science, 22(5), pp. 1187-1195.
  • Ayta¸c, A., Turaci, T. and Odabas, Z.N., (2013), On The Bondage Number of Middle Graphs, Math- ematical Notes, 93(6), pp. 803-811.
  • Ayta¸c, A., Odabas, Z.N. and Turaci, T.,(2011), The Bondage Number for Some Graphs, Comptes Rendus de Lacademie Bulgare des Sciences, 64(7), pp. 925-930.
  • Ayta¸c, V., (2012), Average Lower Domination Number in Graphs, Comptes Rendus de Lacademie Bulgare des Sciences, 65(12), pp. 1665-1674.
  • Barefoot, C.A., Entringer, R. and Swart, H., (1987), Vulnerability in graphs-a comparative survey, J. Combin. Math. Combin. Comput., 1, pp. 13-22.
  • Bauer, D., Harary, F., Nieminen, J. and Suffel C. L., (1983), Domination alteration sets in graph, Discrete Math., 47, pp. 153-161.
  • Beineke, L.W., Oellermann, O.R. and Pippert, R.E., (2002), The Average Connectivity of a Graph, Disc. Math., 252(1-3), pp. 31-45.
  • Blidia, M., Chellali, M. and Maffray, F., (2005), On Average Lower Independence and Domination Number in Graphs, Disc. Math., 295, pp. 1-11.
  • Chellali, M., (2006), Bounds on the 2-Domination Number in Cactus Graps, Opuscula Mathematica, 26(1), pp. 5-12.
  • Chvatal, V., (1973), Tough graphs and Hamiltonian circuits, Discrete Math., 5, pp. 215-228.
  • Fink, J.F. and Jacobson M.S., (1985), n-domination in graphs, in: Alavi Y. and Schwenk A. J.(eds), Graph Theory with Applications to Algorithms and Computer Science, NewYork, Wiley, pp. 283-300.
  • Frank, H. and Frisch, I.T., (1970), Analysis and design of survivable Networks, IEEE Transactions on Communications Technology, 18(5), pp. 501-519.
  • Henning, M.A. and Oellermann, O.R., (2004), The Average Connectivity of a Digraph, Discrete App. Math., 140(1-3), pp. 143-153.
  • Henning, M.A., (2004), Trees with Equal Average Domination and Independent Domination Numbers, Ars Combin., 71, pp. 305-318.
  • Javaid, I. and Shokat, S., (2008), On the Partition Dimension of Some Wheel Related Graphs, Journal of Prime Research in Mathematics, 4, pp. 154-164.
  • Krzywkowski, M., (2013), 2-bondage in graphs, International Journal of Computer Mathematics, 90(7), pp. 1358-1365.
  • Mishkovski, I., Biey, M. and Kocarev, L., (2011), Vulnerability of complex Networks, Commun. Non- linear Sci Numer Simulat., 16, pp. 341-349.
  • Newport, K.T. and Varshney, P.K., (1991), Design of survivable communication networks under per- formance constraints, IEEE Transactions on Reliability, 40, pp. 433-440.
  • Tuncel, G.H., Turaci, T. and Coskun, B., (2015), The Average Lower Domination Number and Some Results of Complementary Prisms and Graph Join, Journal of Advanced Research in Applied Math- ematics, 7(1), pp. 52-61.
  • Turaci, T. and Okten, M., (2015), Vulnerability Of Mycielski Graphs via Residual Closeness, Ars Combinatoria, 118, pp. 419-427.
  • Turaci, T., (2016), On The Average Lower Bondage Number a Graph, RAIRO-Operations Research, 50(4-5), pp. 1003-1012.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

T. Turacı Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 3

Kaynak Göster