BibTex RIS Kaynak Göster

ANALYSIS OF TWO-DIMENSIONAL NON-LINEAR BURGERS' EQUATIONS

Yıl 2019, Cilt: 9 Sayı: 1, 38 - 48, 01.03.2019

Öz

In this paper,we prove the existence, uniqueness and continuously of solution of two-dimensional Burgers' equations by iteration method.

Kaynakça

  • Hill GW., (1886), On the part of the motion of the lunar perigee which is a function ofthe mean motions of the sun and moon, Acta Mathematica , 8: 1-36.
  • Bahadır A.R.,(2015), A fully implicit finite -difference scheme for two-diensional Burgers’ equations, Appl.Math. Comput. 206, 131-137.
  • Jain P.C, Holla D.N., (1978), Numerical solution of coupled Burgers’ equations, Int.J.Numer. Meth. Eng. 12, 213-222.
  • Wubs,F.W, E.D. de Goede, (1992), An explicit-implicit method for a class of time dependent partial differential equations, Appl.Numer.Math. 9 ,157-181.
  • Smith G.D., (1985), Numerical Solutions of Partial Differential Equations Finite Difference Methods, Clarendon Press, Oxford.
  • Vessiof E., (1893), On a class of differential equations, Annaks Scientifiques de l’E cole Normale Superieure, vol.10, p.53.
  • Guldberg A., (1893), On differential equations posseing a fundamental system of integrals, Comptes Rendusde l’ Academie des Scinces, vol:116. p.964.
  • S.Lie, (1885), General studies on differential equations admitting finite contnuous grups, Matheman- tische Annolen , vol.25, no.1, pp.71-151, reprinted in Lie’s Collected Works, vol.6, 139-223.
  • S.Lie, (1893), On ordinary differential equations possesing fundamental systems of integrals, Comptes Rendusde l’ Academie des Scinces, vol.116, reprinted in Lie’s Collected Works , vol.4, 314-316.
  • Jones S.E. and Ames W.F., (1967), Nonlinear superposition, Journal of Mathematical Anaysis and Applications, 17, 484-487.
  • Saad, K.M., Atangana, A. and Baleanu, D., (2018), New fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 6 : 063109.
Yıl 2019, Cilt: 9 Sayı: 1, 38 - 48, 01.03.2019

Öz

Kaynakça

  • Hill GW., (1886), On the part of the motion of the lunar perigee which is a function ofthe mean motions of the sun and moon, Acta Mathematica , 8: 1-36.
  • Bahadır A.R.,(2015), A fully implicit finite -difference scheme for two-diensional Burgers’ equations, Appl.Math. Comput. 206, 131-137.
  • Jain P.C, Holla D.N., (1978), Numerical solution of coupled Burgers’ equations, Int.J.Numer. Meth. Eng. 12, 213-222.
  • Wubs,F.W, E.D. de Goede, (1992), An explicit-implicit method for a class of time dependent partial differential equations, Appl.Numer.Math. 9 ,157-181.
  • Smith G.D., (1985), Numerical Solutions of Partial Differential Equations Finite Difference Methods, Clarendon Press, Oxford.
  • Vessiof E., (1893), On a class of differential equations, Annaks Scientifiques de l’E cole Normale Superieure, vol.10, p.53.
  • Guldberg A., (1893), On differential equations posseing a fundamental system of integrals, Comptes Rendusde l’ Academie des Scinces, vol:116. p.964.
  • S.Lie, (1885), General studies on differential equations admitting finite contnuous grups, Matheman- tische Annolen , vol.25, no.1, pp.71-151, reprinted in Lie’s Collected Works, vol.6, 139-223.
  • S.Lie, (1893), On ordinary differential equations possesing fundamental systems of integrals, Comptes Rendusde l’ Academie des Scinces, vol.116, reprinted in Lie’s Collected Works , vol.4, 314-316.
  • Jones S.E. and Ames W.F., (1967), Nonlinear superposition, Journal of Mathematical Anaysis and Applications, 17, 484-487.
  • Saad, K.M., Atangana, A. and Baleanu, D., (2018), New fractional derivatives with non-singular kernel applied to the Burgers equation, Chaos: An Interdisciplinary Journal of Nonlinear Science 28, 6 : 063109.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

İrem Bağlan Bu kişi benim

Yayımlanma Tarihi 1 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 1

Kaynak Göster