BibTex RIS Kaynak Göster

ON NEW CONFORMABLE FRACTIONAL INTEGRAL INEQUALITIES FOR PRODUCT OF DIFFERENT KINDS OF CONVEXITY

Yıl 2019, Cilt: 9 Sayı: 1, 142 - 150, 01.03.2019

Öz

Certain Hermite-Hadamard type inequalities involving various fractional integral operators for products of two functions have, recently, been presented. We aim to establish several Hermite-Hadamard type inequalities for products of two convex and s-convex functions via new conformable fractional integral operators.

Kaynakça

  • Abdeljawad, T., (2015), On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-66.
  • Avci, M., Kavurmaci, H., ¨Ozdemir, M.E., (2011), New inequalities of HermiteHadamard type via s-convex functions in the second sense with applications, Applied Mathematics and Computation, 217(12), 5171-5176.
  • Breckner, W.W., (1978), Stetigkeitsaussagen fr eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math. 23, 1320.
  • Chen, F., and Wu, S., (2016), Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9, 705-716.
  • Dragomir, W.W. and Fitzpatrik, S., (1999), The Hadamard’s inequality for s -convex functions in the second sense, Demonstratio Math. 32(4), 687-696.
  • Hudzik, H., Maligranda, L., (1994), Some remarks on s-convex functions, Aequationes Math. 48, 100-111.
  • Jarad, F., U˘gurlu, E., Abdeljawad, T. and Baleanu, D., (2017), On a new class of fractional operators, Advances in Difference Equations, (1), 2017:247, DOI 10.1186/s13662-017-1306-z.
  • Katugampola, U.N., (2014), New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6(4), 1-15.
  • Kilbas, A. A., (2001), Hadamard-type fractional calculus, Journal of the Korean Mathematical Society 38(6), 1191-1204.
  • Rainville, E.D., (1960),Special Functions, The Mcmillan Company, New York.
  • Set, E. and C¸ elik, B., (2017), Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators, Creative Math. Inform., 26(3), 321-330.
  • Set, E., Akdemir, A.O., Mumcu, ˙I., (2018), The Hermite-Hadamard’s inequaly and its extentions for conformable fractional integrals of any order α > 0, Creative Math. Inform., 27(2), 197-206.
  • Set, E., G¨ozpınar, A., Mumcu, A., (2018), The Hermite-Hadamard Inequality For s-convex Functions In The Second Sense Via Conformable Fractional Integrals And Related Inequalities, Thai J. Math., accepted.
  • Set, E., Akdemir, A., C¸ elik, B., (2016), Some Hermite-Hadamard Type Inequalities for Products of Two Different Convex Functions via Conformable Fractional Integrals, X. Statistical Days, 11-15 November 2016, Giresun-Turkey.
  • Srivastava, H.M. and Choi, J., (2012), Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York.
Yıl 2019, Cilt: 9 Sayı: 1, 142 - 150, 01.03.2019

Öz

Kaynakça

  • Abdeljawad, T., (2015), On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57-66.
  • Avci, M., Kavurmaci, H., ¨Ozdemir, M.E., (2011), New inequalities of HermiteHadamard type via s-convex functions in the second sense with applications, Applied Mathematics and Computation, 217(12), 5171-5176.
  • Breckner, W.W., (1978), Stetigkeitsaussagen fr eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math. 23, 1320.
  • Chen, F., and Wu, S., (2016), Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9, 705-716.
  • Dragomir, W.W. and Fitzpatrik, S., (1999), The Hadamard’s inequality for s -convex functions in the second sense, Demonstratio Math. 32(4), 687-696.
  • Hudzik, H., Maligranda, L., (1994), Some remarks on s-convex functions, Aequationes Math. 48, 100-111.
  • Jarad, F., U˘gurlu, E., Abdeljawad, T. and Baleanu, D., (2017), On a new class of fractional operators, Advances in Difference Equations, (1), 2017:247, DOI 10.1186/s13662-017-1306-z.
  • Katugampola, U.N., (2014), New approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6(4), 1-15.
  • Kilbas, A. A., (2001), Hadamard-type fractional calculus, Journal of the Korean Mathematical Society 38(6), 1191-1204.
  • Rainville, E.D., (1960),Special Functions, The Mcmillan Company, New York.
  • Set, E. and C¸ elik, B., (2017), Certain Hermite-Hadamard type inequalities associated with conformable fractional integral operators, Creative Math. Inform., 26(3), 321-330.
  • Set, E., Akdemir, A.O., Mumcu, ˙I., (2018), The Hermite-Hadamard’s inequaly and its extentions for conformable fractional integrals of any order α > 0, Creative Math. Inform., 27(2), 197-206.
  • Set, E., G¨ozpınar, A., Mumcu, A., (2018), The Hermite-Hadamard Inequality For s-convex Functions In The Second Sense Via Conformable Fractional Integrals And Related Inequalities, Thai J. Math., accepted.
  • Set, E., Akdemir, A., C¸ elik, B., (2016), Some Hermite-Hadamard Type Inequalities for Products of Two Different Convex Functions via Conformable Fractional Integrals, X. Statistical Days, 11-15 November 2016, Giresun-Turkey.
  • Srivastava, H.M. and Choi, J., (2012), Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Ahmet Ocak Akdemir Bu kişi benim

Erhan Set Bu kişi benim

Alper Ekinci Bu kişi benim

Yayımlanma Tarihi 1 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 1

Kaynak Göster