BibTex RIS Kaynak Göster

FIXED POINT THEOREMS FOR GENERALIZED ; ' -WEAK CONTRACTIONS

Yıl 2017, Cilt: 7 Sayı: 2, 261 - 271, 01.12.2017

Öz

In this paper, we prove some xed point theorems for generalized ; ' - weak contractive mappings in a metric space. Our result generalized and extend recent results of Singh et al.[16, Theorem 2.1], Doric [7, Theorem 2.1], Rhoades [15, Theorem 1] and Dutta and Choudhary [9, Theorem 2.1]. Also, we provid an example to support the useability of our results.

Kaynakça

  • Banach,B., (1922), Surles operations dons les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae., 3, pp.133-181.
  • Bilgili,N., Karapinar,E. and Turkoglu,D., (2013), A note on common fixed points for (psi,alpha,beta)- weakly contractive mappings in generalized metric spaces, Fixed Point Theory and Applications., doi: 1186/1687-1812-2013-287.
  • Chauhan,S., Karapinar,E., Shatanawi,W., and Vetro,C., (2015), Fixed points of weakly compatible mappings satisfying generalized ϕ-weak contractions, Bulletin of the Malaysian Mathematical Sciences Society., 38, pp.1085-1105.
  • Chi,K.P., Karapinar,E. and Thanh,T.D., (2013), On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces Bulletin of the Iranian Mathematical Society, 39, pp.369
  • ´Ciri´c,L.B., (1974) A generalization of Banachs contraction principle, Proc. Amer. Math. Soc., 45, pp.267-273.
  • ´Ciri´c,L.B., (1972), Fixed points for generalized multivalued contractions, Mat. Vesnik., 9, pp.265-272.
  • Dori´c,D., (2009), Common fixed point for generalized (ψ −ϕ)-weak contractions, Applied Mathematics Letters., 22, pp.1896-1900.
  • Dung,N.V. and Hang,V.T.L, (2015), A fixed point theorem for generalized F-contractions on complete metric spaces.Vietnam Journal of Mathematics., doi: 10.1007/s10013-015-0123-5.
  • Dutta,P.N. and Choudhary, B.S., (2008), A generalization of contraction principle in metric spaces,Fixed Point Theory Appl., doi: 10.1155/2008/406368.
  • Karapinar,E., (2012), Weak φ-contraction on partial contraction, J. Comput. Anal. Appl., 14, pp.206
  • Karapinar,E. and Rakocevic,V., (2013), On cyclic generalized weakly C-contractions on partial metric spaces, Abstract and Applied Analysis., http://dx.doi.org/10.1155/2013/831491.
  • Karapinar, E. and Sadarangani, K., (2013), Triple Fixed Point Theorems For Weak (psi-phi)
  • Contractions, J. Comput. Anal. Appl., 15, pp. 844-851. Karapinar,E. and Shatanawi,W., (2012), On weakly (C,psi,phi)-contractive mappings in partiallly ordered metric spaces Abstr. Appl. Anal., http://dx.doi.org/10.1155/2012/495892.
  • Kinces,J. and Totik,V., (1990), Theorems and counter examples on contractive mappings, Math. Balkanica., 4, pp.69-90.
  • Rhoades,B.E., (2001), Some theorems on weakly contractive maps, Nonlinear Anal. 47, pp.2683-2693.
  • Singha,S.L., Kamalb,R., Senc,M.D.l. and Chughb,R., (2015), A Fixed Point Theorem for Generalized Weak Contractions, Filomat., 29, pp.1481-1490.
  • Suzuki,T., (2009), A new type of fixed point theorem in metric spaces , Nonlinear Analysis. 71, pp.5313-5317.
  • W lodarczyk,K. and Plebaniak,P., (2011), Kannan-type contractions and fixed points in uniform spaces, Fixed Point Theory and Applications., doi: 10.1186/1687-1812-2011-90.
  • W lodarczyk,K. and Plebaniak,R., (2012), Contractivity of Leader type and fixed points in uni- formspaces with generalized pseudodistances, Journal of Mathematical Analysis and Applications., , pp.533-541.
Yıl 2017, Cilt: 7 Sayı: 2, 261 - 271, 01.12.2017

Öz

Kaynakça

  • Banach,B., (1922), Surles operations dons les ensembles abstraits et leur application aux equations integrales, Fundamenta Mathematicae., 3, pp.133-181.
  • Bilgili,N., Karapinar,E. and Turkoglu,D., (2013), A note on common fixed points for (psi,alpha,beta)- weakly contractive mappings in generalized metric spaces, Fixed Point Theory and Applications., doi: 1186/1687-1812-2013-287.
  • Chauhan,S., Karapinar,E., Shatanawi,W., and Vetro,C., (2015), Fixed points of weakly compatible mappings satisfying generalized ϕ-weak contractions, Bulletin of the Malaysian Mathematical Sciences Society., 38, pp.1085-1105.
  • Chi,K.P., Karapinar,E. and Thanh,T.D., (2013), On the fixed point theorems in generalized weakly contractive mappings on partial metric spaces Bulletin of the Iranian Mathematical Society, 39, pp.369
  • ´Ciri´c,L.B., (1974) A generalization of Banachs contraction principle, Proc. Amer. Math. Soc., 45, pp.267-273.
  • ´Ciri´c,L.B., (1972), Fixed points for generalized multivalued contractions, Mat. Vesnik., 9, pp.265-272.
  • Dori´c,D., (2009), Common fixed point for generalized (ψ −ϕ)-weak contractions, Applied Mathematics Letters., 22, pp.1896-1900.
  • Dung,N.V. and Hang,V.T.L, (2015), A fixed point theorem for generalized F-contractions on complete metric spaces.Vietnam Journal of Mathematics., doi: 10.1007/s10013-015-0123-5.
  • Dutta,P.N. and Choudhary, B.S., (2008), A generalization of contraction principle in metric spaces,Fixed Point Theory Appl., doi: 10.1155/2008/406368.
  • Karapinar,E., (2012), Weak φ-contraction on partial contraction, J. Comput. Anal. Appl., 14, pp.206
  • Karapinar,E. and Rakocevic,V., (2013), On cyclic generalized weakly C-contractions on partial metric spaces, Abstract and Applied Analysis., http://dx.doi.org/10.1155/2013/831491.
  • Karapinar, E. and Sadarangani, K., (2013), Triple Fixed Point Theorems For Weak (psi-phi)
  • Contractions, J. Comput. Anal. Appl., 15, pp. 844-851. Karapinar,E. and Shatanawi,W., (2012), On weakly (C,psi,phi)-contractive mappings in partiallly ordered metric spaces Abstr. Appl. Anal., http://dx.doi.org/10.1155/2012/495892.
  • Kinces,J. and Totik,V., (1990), Theorems and counter examples on contractive mappings, Math. Balkanica., 4, pp.69-90.
  • Rhoades,B.E., (2001), Some theorems on weakly contractive maps, Nonlinear Anal. 47, pp.2683-2693.
  • Singha,S.L., Kamalb,R., Senc,M.D.l. and Chughb,R., (2015), A Fixed Point Theorem for Generalized Weak Contractions, Filomat., 29, pp.1481-1490.
  • Suzuki,T., (2009), A new type of fixed point theorem in metric spaces , Nonlinear Analysis. 71, pp.5313-5317.
  • W lodarczyk,K. and Plebaniak,P., (2011), Kannan-type contractions and fixed points in uniform spaces, Fixed Point Theory and Applications., doi: 10.1186/1687-1812-2011-90.
  • W lodarczyk,K. and Plebaniak,R., (2012), Contractivity of Leader type and fixed points in uni- formspaces with generalized pseudodistances, Journal of Mathematical Analysis and Applications., , pp.533-541.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

H. Pırı Bu kişi benim

S. Rahrovı Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 7 Sayı: 2

Kaynak Göster