BibTex RIS Kaynak Göster
Yıl 2015, Cilt: 5 Sayı: 2, 298 - 306, 01.12.2015

Öz

Kaynakça

  • Bayındır, C., (2009), Implementation of a Computational Model for Random Directional Seas and Underwater Acoustics, MS Thesis, University of Delaware.
  • Bayındır, C., (2015), Early detection of rogue waves by the wavelet transforms, Physics Letters A, 10.1016/j.physleta.2015.09.051.
  • Bayındır, C., (2015), Hesaplamalı akı¸skanlar mekani˘gi ¸calı¸smaları i¸cin sıkı¸stırılabilir Fourier tayfı y¨ontemi, 19. Mekanik Kongresi, Trabzon (In Turkish).
  • Bayındır, C., (2015), Okyanus dalgalarının sıkı¸stırılabilir Fourier tayfı y¨ontemiyle hızlı modellenmesi, 19. Mekanik Kongresi, Trabzon (In Turkish).
  • Bogomolov, Y. L. and Yunakovsky, A. D., (2006), Split-step Fourier method for nonlinear Schrodinger equation, Proceedings of the International Conference Day on Diffraction, pp. 34-42.
  • Candes, E. J., Romberg, J. and Tao, T., (2006), Robust uncertainty principles: Exact signal recon- struction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52, pp. 489-509.
  • Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. , (2006), Spectral Methods: Fundamen- tals in Single Domains, Springer-Verlag, Berlin.
  • Demiray, H. and Bayindir, C., (2015), A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution, Physics of Plasmas, 22, 092105; doi: 10.1063/1.4929863.
  • Hardin, R. H. and Tappert, F. D., (1973), Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation, SIAM Review Chronicles, 15, pp. 423-423.
  • Hirota, R., (1973), Exact envelope-soliton solutions of a nonlinear wave equation, The Journal of Mathematical Physics, 14, pp. 805-809.
  • Karjadi, E. A., Badiey, M. and Kirby, J. T., (2010), Impact of surface gravity waves on high-frequency acoustic propagation in shallow water, The Journal of the Acoustical Society of America, 127, pp. 1787-1787.
  • Karjadi, E. A., Badiey, M., Kirby, J. T. and Bayindir, C., (2012), The effects of surface gravity waves on high-frequency acoustic propagation in shallow water, IEEE Journal of Oceanic Engineering, 37, pp. 112-121.
  • Taha, T. R. and Ablowitz, M. J., (1984), Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical Nonlinear Schrodinger Equation, Journal of Computational Physics, 22, pp. 203-230.
  • Trefethen, L. N., (2000), Spectral Methods in MATLAB, SIAM, Philadelphia.
  • Zakharov, V. E., (1968), Stability of periodic waves of finite amplitude on the surface of a deep fluid, Soviet Physics JETP, 2, pp. 190-194.

Compressive Split-Step Fourier Method

Yıl 2015, Cilt: 5 Sayı: 2, 298 - 306, 01.12.2015

Öz

In this paper an approach for decreasing the computational effort required for the split-step Fourier method SSFM is introduced. It is shown that using the sparsity property of the simulated signals, the compressive sampling algorithm can be used as a very efficient tool for the split-step spectral simulations of various phenomena which can be modeled by using differential equations. The proposed method depends on the idea of using a smaller number of spectral components compared to the classical split-step Fourier method with a high number of components. After performing the time integration with a smaller number of spectral components and using the compressive sampling technique with l1 minimization, it is shown that the sparse signal can be reconstructed with a significantly better efficiency compared to the classical split-step Fourier method. Proposed method can be named as compressive split-step Fourier method CSSFM . For testing of the proposed method the Nonlinear Schr¨odinger Equation and its one-soliton and two-soliton solutions are considered.

Kaynakça

  • Bayındır, C., (2009), Implementation of a Computational Model for Random Directional Seas and Underwater Acoustics, MS Thesis, University of Delaware.
  • Bayındır, C., (2015), Early detection of rogue waves by the wavelet transforms, Physics Letters A, 10.1016/j.physleta.2015.09.051.
  • Bayındır, C., (2015), Hesaplamalı akı¸skanlar mekani˘gi ¸calı¸smaları i¸cin sıkı¸stırılabilir Fourier tayfı y¨ontemi, 19. Mekanik Kongresi, Trabzon (In Turkish).
  • Bayındır, C., (2015), Okyanus dalgalarının sıkı¸stırılabilir Fourier tayfı y¨ontemiyle hızlı modellenmesi, 19. Mekanik Kongresi, Trabzon (In Turkish).
  • Bogomolov, Y. L. and Yunakovsky, A. D., (2006), Split-step Fourier method for nonlinear Schrodinger equation, Proceedings of the International Conference Day on Diffraction, pp. 34-42.
  • Candes, E. J., Romberg, J. and Tao, T., (2006), Robust uncertainty principles: Exact signal recon- struction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52, pp. 489-509.
  • Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. , (2006), Spectral Methods: Fundamen- tals in Single Domains, Springer-Verlag, Berlin.
  • Demiray, H. and Bayindir, C., (2015), A note on the cylindrical solitary waves in an electron-acoustic plasma with vortex electron distribution, Physics of Plasmas, 22, 092105; doi: 10.1063/1.4929863.
  • Hardin, R. H. and Tappert, F. D., (1973), Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation, SIAM Review Chronicles, 15, pp. 423-423.
  • Hirota, R., (1973), Exact envelope-soliton solutions of a nonlinear wave equation, The Journal of Mathematical Physics, 14, pp. 805-809.
  • Karjadi, E. A., Badiey, M. and Kirby, J. T., (2010), Impact of surface gravity waves on high-frequency acoustic propagation in shallow water, The Journal of the Acoustical Society of America, 127, pp. 1787-1787.
  • Karjadi, E. A., Badiey, M., Kirby, J. T. and Bayindir, C., (2012), The effects of surface gravity waves on high-frequency acoustic propagation in shallow water, IEEE Journal of Oceanic Engineering, 37, pp. 112-121.
  • Taha, T. R. and Ablowitz, M. J., (1984), Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical Nonlinear Schrodinger Equation, Journal of Computational Physics, 22, pp. 203-230.
  • Trefethen, L. N., (2000), Spectral Methods in MATLAB, SIAM, Philadelphia.
  • Zakharov, V. E., (1968), Stability of periodic waves of finite amplitude on the surface of a deep fluid, Soviet Physics JETP, 2, pp. 190-194.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

C. Bayındır Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 5 Sayı: 2

Kaynak Göster