İnceleme Makalesi
BibTex RIS Kaynak Göster

EVALUATING NEW APPROACHES IN MARITIME TRANSPORT AND COASTAL STRUCTURES FROM AN ENVIRONMENTAL SUSTAINABILITY PERSPECTIVE

Yıl 2025, Sayı: 3, 1 - 17, 29.12.2025

Öz

Maritime transport and coastal structures are among the fundamental components of global maritime trade and are undergoing a sustainability-focused transformation process in line with the strict emission measures enacted by the IMO (International Maritime Organization) and the EU (European Union) as a result of increasing environmental concerns. This study aims to examine new approaches developed and implemented in maritime transport and port activities worldwide from an environmental sustainability perspective. In particular, by comparing different countries, ports, or policies, a conceptual and comparative literature analysis was conducted. As a result of the status assessment of current practices, it was determined that alternative fuels (LNG, methanol, ammonia, etc.), digitalization and smart shipping applications, energy efficiency measures, and green port initiatives play a critical role in ensuring environmental sustainability. However, it has been observed that alternative fuels have limitations such as supply security, high investment costs, and methane leakage, and that digital infrastructure investments may be insufficient, especially in developing countries. The findings reveal that sectoral transformation is possible not only through technological innovations but also through predictable regulations by policymakers, financial incentive mechanisms, and the concerted action of stakeholders. The study serves as a guide for strategic decision-making processes for shipping companies, port authorities, and policymakers, emphasizing the importance of comprehensive solutions for environmental sustainability goals.

Kaynakça

  • Acciaro, M., Vanelslander, T., Sys, C., Ferrari, C., Roumboutsos, A., Giuliano, G., ... & Kapros, S. (2014). Environmental sustainability in seaports: a framework for successful innovation. Maritime Policy & Management, 41(5), 480-500.
  • Alamoush, A. S., Ölçer, A. I., & Ballini, F. (2022). Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas emissions reduction. Cleaner Logistics and Supply Chain, 3, 100021
  • Arıcan, O. H., Toprakçı, O., Ünal, A. U., & Özbağ, G. K. (2025). Analyzing Carbon Regulation Impacts on Maritime Sector Using Fuzzy Delphi–DEMATEL–ISM Approach. Systems, 13(11), 955.
  • Bahri, M. S. S., Shariff, S. S. R., & Yahya, N. (2025). Sustainable port operations and environmental initiatives in Malaysia: A focus on environmental sustainability. The Asian Journal of Shipping and Logistics, 41(1), 38-51.
  • Cullinane, K., & Yang, J. (2022). Evaluating the costs of decarbonizing the shipping industry: A review of the literature. Journal of Marine Science and Engineering, 10(7), 946.
  • Dong, J., Zeng, J., Yang, Y., & Wang, H. (2022). A review of law and policy on decarbonization of shipping. Frontiers in Marine Science, 9, 1076352.
  • He, Y., Yan, X., Fan, A., Yin, X., Meng, Q., Zhang, L., & Liu, P. (2024). Assessing the influence of actual LNG emission factors within the EU emissions trading system. Transport Policy, 159, 345-358.
  • Hellström, M., Rabetino, R., Schwartz, H., Tsvetkova, A., & Haq, S. H. U. (2024). GHG emission reduction measures and alternative fuels in different shipping segments and time horizons–A Delphi study. Marine Policy, 160, 105997.
  • Hossain, T., Adams, M., & Walker, T. R. (2021). Role of sustainability in global seaports. Ocean & Coastal Management, 202, 105435.
  • Issa, M., Ilinca, A., & Martini, F. (2022). Ship energy efficiency and maritime sector initiatives to reduce carbon emissions. Energies, 15(21), 7910.
  • Jia, H., Adland, R., Prakash, V., & Smith, T. (2017). Energy efficiency with the application of Virtual Arrival policy. Transportation Research Part D: Transport and Environment, 54, 50-60.
  • Khalifeh, M., & Caliskan, A. (2025). The role of port smartness in achieving sustainable development goals. Maritime Policy & Management, 52(1), 106-120.
  • Kotzampasakis, M. (2025). Maritime Emissions Trading in the EU: Systematic Literature Review and Policy Assessment. Transport Policy.
  • Lalla-Ruiz, E., Heilig, L., & Voß, S. (2019). Environmental sustainability in ports. In Sustainable transportation and smart logistics (pp. 65-89). Elsevier.
  • Lugovskyy, V., Skiba, A., & Terner, D. (2025). Unintended consequences of environmental regulation of maritime shipping: carbon leakage to air shipping. Journal of International Economics, 155, 104081.
  • Notteboom, T., Pallis, A., & Rodrigue, J.-P. (2022). Port economics, management and policy (1. baskı). Routledge.
  • OffshoreEnergy.2022. COSCO: ‘World’s first’ LNG dual-fuel VLCC delivered in China. https://www. offshore-energy.biz/cosco-worlds-first-lng-dual-fuel-vlcc-delivered-in-china/. Erişim Tarihi: 16 Aralık 2024.
  • Oh, J., Kim, D., Roussanaly, S., & Lim, Y. (2024). Greenhouse gas emissions of shipping with onboard carbon capture under the FuelEU Maritime regulation: a well-to-wake evaluation of different propulsion scenarios. Chemical Engineering Journal, 498, 155407.
  • Park, S., Lee, H., & Kim, D. (2024). Regulatory compliance and operational efficiency in maritime transport: Strategies and insights. Transport Policy, 155, 161-177.
  • Ramsay, W., Fridell, E., & Michan, M. (2023). Maritime energy transition: future fuels and future emissions. Journal of Marine Science and Application, 22(4), 681-692.
  • Rony, Z. I., Mofijur, M., Hasan, M. M., Rasul, M. G., Jahirul, M. I., Ahmed, S. F., ... & Show, P. L. (2023). Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel, 338, 127220
  • Shi, J., Zhu, Y., Feng, Y., Yang, J., & Xia, C. (2023). A prompt decarbonization pathway for shipping: green hydrogen, ammonia, and methanol production and utilization in marine engines. Atmosphere, 14(3), 584
  • Sjerić, M., Perčić, M., Jovanović, I., & Vladimir, N. (2025). Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation. Journal of Marine Science and Application, 1-18.
  • Song, J., Xu, C., & Wang, C. (2024). Impacts of the carbon tax on green shipping supply chain under the port competition. Expert Systems, 41(5), e13229
  • Sun, M., Vortia, M. P., Xiao, G., & Yang, J. (2025). Carbon Policies and Liner Speed Optimization: Comparisons of Carbon Trading and Carbon Tax Combined with the European Union Emissions Trading Scheme. Journal of Marine Science and Engineering, 13(2), 204.
  • Taskar, B., Sasmal, K., & Yiew, L. J. (2023). A case study for the assessment of fuel savings using speed optimization. Ocean Engineering, 274, 113990.
  • Ülker, D., & Goksu, S. (2025). The Bilateral Impacts of Global Climate Change on the Shipping Sector: An Analysis of IPCC Scenarios and IMO’S GHG Emissions Reduction Strategies. The Role of Exergy and Energy in Sustainability, 85-98.
  • Vuskovic, B., Rudan, I., & Sumner, M. (2023). Fostering sustainable LNG bunkering operations: development of regulatory framework. Sustainability, 15(9), 7358.
  • Wan, Z., Nie, A., Chen, J., Pang, C., & Zhou, Y. (2025). Transforming ports for a low-carbon future: Innovations, challenges, and opportunities. Ocean & Coastal Management, 264, 107636
  • Wang, X., Liu, H., Zhang, J., Fu, X., Chen, D., Zhang, W., ... & He, K. (2025). Global shipping emissions from 1970 to 2021: Structural and spatial change driven by trade dynamics. One Earth, 8(4).
  • Wang, T., Cheng, P., & Wang, Y. (2025). How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area. Transport Policy, 160, 138- 153.
  • Wu, M., Li, K. X., Xiao, Y., & Yuen, K. F. (2022). Carbon Emission Trading Scheme in the shipping sector: Drivers, challenges, and impacts. Marine Policy, 138, 104989.
  • Xing, H., Stuart, C., Spence, S., & Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297, 126651.
  • Xu, L., & Chen, Y. (2025). Overview of sustainable maritime transport optimization and operations. Sustainability, 17(14), 6460.
  • Yara, 2025. MV Yara Birkeland.https://www.yara.com/. Erişim Tarihi: 08 Ekim 2025.

DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ

Yıl 2025, Sayı: 3, 1 - 17, 29.12.2025

Öz

Denizyolu taşımacılığı ve kıyı yapıları, küresel deniz ticaretinin temel bileşenleri arasında yer almakta ve artan çevresel kaygılar sonucu IMO (Uluslararası Denizcilik Örgütü) ve AB (Avrupa Birliği)’nin yürürlüğe koyduğu sıkı emisyon tedbirleri doğrultusunda sürdürülebilirlik odaklı bir dönüşüm sürecine girmektedir. Bu çalışma, dünya genelinde denizyolu taşımacılığı ve liman faaliyetlerinde geliştirilen ve hayata geçirilen yeni yaklaşımları çevresel sürdürülebilirlik perspektifinden incelemeyi amaçlamaktadır. Özellikle farklı ülkeler, limanlar veya politikalar kıyaslanarak kavramsal ve karşılaştırılmalı literatür analizi sonucu güncel uygulamaların durum değerlendirmesi neticesinde, alternatif yakıtlar (LNG, metanol, amonyak vb.), dijitalleşme ve akıllı denizcilik uygulamaları, enerji verimliliği tedbirleri ile yeşil liman girişimlerinin çevresel sürdürülebilirliğin sağlanmasında kritik rol oynadığı tespit edilmiştir. Bununla birlikte, alternatif yakıtların arz güvenliği, yüksek yatırım maliyetleri ve metan kaçağı gibi sınırlılıklar ile dijital altyapı yatırımlarının özellikle gelişmekte olan ülkelerde yetersiz kalabileceği görülmüştür. Bulgular, sektörel dönüşümün yalnızca teknolojik yeniliklerle değil, aynı zamanda politika yapıcıların öngörülebilir düzenlemeleri, finansal teşvik mekanizmaları ve paydaşların ortak bir tavırla hareketi ile mümkün olabileceğini ortaya koymaktadır. Çalışma, denizcilik firmaları, liman otoriteleri ve politika yapıcılar için stratejik karar alma süreçlerinde yol gösterici nitelikte olup, çevresel sürdürülebilirlik hedeflerine yönelik bütüncül çözümlerin önemini vurgulamaktadır.

Kaynakça

  • Acciaro, M., Vanelslander, T., Sys, C., Ferrari, C., Roumboutsos, A., Giuliano, G., ... & Kapros, S. (2014). Environmental sustainability in seaports: a framework for successful innovation. Maritime Policy & Management, 41(5), 480-500.
  • Alamoush, A. S., Ölçer, A. I., & Ballini, F. (2022). Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas emissions reduction. Cleaner Logistics and Supply Chain, 3, 100021
  • Arıcan, O. H., Toprakçı, O., Ünal, A. U., & Özbağ, G. K. (2025). Analyzing Carbon Regulation Impacts on Maritime Sector Using Fuzzy Delphi–DEMATEL–ISM Approach. Systems, 13(11), 955.
  • Bahri, M. S. S., Shariff, S. S. R., & Yahya, N. (2025). Sustainable port operations and environmental initiatives in Malaysia: A focus on environmental sustainability. The Asian Journal of Shipping and Logistics, 41(1), 38-51.
  • Cullinane, K., & Yang, J. (2022). Evaluating the costs of decarbonizing the shipping industry: A review of the literature. Journal of Marine Science and Engineering, 10(7), 946.
  • Dong, J., Zeng, J., Yang, Y., & Wang, H. (2022). A review of law and policy on decarbonization of shipping. Frontiers in Marine Science, 9, 1076352.
  • He, Y., Yan, X., Fan, A., Yin, X., Meng, Q., Zhang, L., & Liu, P. (2024). Assessing the influence of actual LNG emission factors within the EU emissions trading system. Transport Policy, 159, 345-358.
  • Hellström, M., Rabetino, R., Schwartz, H., Tsvetkova, A., & Haq, S. H. U. (2024). GHG emission reduction measures and alternative fuels in different shipping segments and time horizons–A Delphi study. Marine Policy, 160, 105997.
  • Hossain, T., Adams, M., & Walker, T. R. (2021). Role of sustainability in global seaports. Ocean & Coastal Management, 202, 105435.
  • Issa, M., Ilinca, A., & Martini, F. (2022). Ship energy efficiency and maritime sector initiatives to reduce carbon emissions. Energies, 15(21), 7910.
  • Jia, H., Adland, R., Prakash, V., & Smith, T. (2017). Energy efficiency with the application of Virtual Arrival policy. Transportation Research Part D: Transport and Environment, 54, 50-60.
  • Khalifeh, M., & Caliskan, A. (2025). The role of port smartness in achieving sustainable development goals. Maritime Policy & Management, 52(1), 106-120.
  • Kotzampasakis, M. (2025). Maritime Emissions Trading in the EU: Systematic Literature Review and Policy Assessment. Transport Policy.
  • Lalla-Ruiz, E., Heilig, L., & Voß, S. (2019). Environmental sustainability in ports. In Sustainable transportation and smart logistics (pp. 65-89). Elsevier.
  • Lugovskyy, V., Skiba, A., & Terner, D. (2025). Unintended consequences of environmental regulation of maritime shipping: carbon leakage to air shipping. Journal of International Economics, 155, 104081.
  • Notteboom, T., Pallis, A., & Rodrigue, J.-P. (2022). Port economics, management and policy (1. baskı). Routledge.
  • OffshoreEnergy.2022. COSCO: ‘World’s first’ LNG dual-fuel VLCC delivered in China. https://www. offshore-energy.biz/cosco-worlds-first-lng-dual-fuel-vlcc-delivered-in-china/. Erişim Tarihi: 16 Aralık 2024.
  • Oh, J., Kim, D., Roussanaly, S., & Lim, Y. (2024). Greenhouse gas emissions of shipping with onboard carbon capture under the FuelEU Maritime regulation: a well-to-wake evaluation of different propulsion scenarios. Chemical Engineering Journal, 498, 155407.
  • Park, S., Lee, H., & Kim, D. (2024). Regulatory compliance and operational efficiency in maritime transport: Strategies and insights. Transport Policy, 155, 161-177.
  • Ramsay, W., Fridell, E., & Michan, M. (2023). Maritime energy transition: future fuels and future emissions. Journal of Marine Science and Application, 22(4), 681-692.
  • Rony, Z. I., Mofijur, M., Hasan, M. M., Rasul, M. G., Jahirul, M. I., Ahmed, S. F., ... & Show, P. L. (2023). Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel, 338, 127220
  • Shi, J., Zhu, Y., Feng, Y., Yang, J., & Xia, C. (2023). A prompt decarbonization pathway for shipping: green hydrogen, ammonia, and methanol production and utilization in marine engines. Atmosphere, 14(3), 584
  • Sjerić, M., Perčić, M., Jovanović, I., & Vladimir, N. (2025). Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation. Journal of Marine Science and Application, 1-18.
  • Song, J., Xu, C., & Wang, C. (2024). Impacts of the carbon tax on green shipping supply chain under the port competition. Expert Systems, 41(5), e13229
  • Sun, M., Vortia, M. P., Xiao, G., & Yang, J. (2025). Carbon Policies and Liner Speed Optimization: Comparisons of Carbon Trading and Carbon Tax Combined with the European Union Emissions Trading Scheme. Journal of Marine Science and Engineering, 13(2), 204.
  • Taskar, B., Sasmal, K., & Yiew, L. J. (2023). A case study for the assessment of fuel savings using speed optimization. Ocean Engineering, 274, 113990.
  • Ülker, D., & Goksu, S. (2025). The Bilateral Impacts of Global Climate Change on the Shipping Sector: An Analysis of IPCC Scenarios and IMO’S GHG Emissions Reduction Strategies. The Role of Exergy and Energy in Sustainability, 85-98.
  • Vuskovic, B., Rudan, I., & Sumner, M. (2023). Fostering sustainable LNG bunkering operations: development of regulatory framework. Sustainability, 15(9), 7358.
  • Wan, Z., Nie, A., Chen, J., Pang, C., & Zhou, Y. (2025). Transforming ports for a low-carbon future: Innovations, challenges, and opportunities. Ocean & Coastal Management, 264, 107636
  • Wang, X., Liu, H., Zhang, J., Fu, X., Chen, D., Zhang, W., ... & He, K. (2025). Global shipping emissions from 1970 to 2021: Structural and spatial change driven by trade dynamics. One Earth, 8(4).
  • Wang, T., Cheng, P., & Wang, Y. (2025). How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area. Transport Policy, 160, 138- 153.
  • Wu, M., Li, K. X., Xiao, Y., & Yuen, K. F. (2022). Carbon Emission Trading Scheme in the shipping sector: Drivers, challenges, and impacts. Marine Policy, 138, 104989.
  • Xing, H., Stuart, C., Spence, S., & Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297, 126651.
  • Xu, L., & Chen, Y. (2025). Overview of sustainable maritime transport optimization and operations. Sustainability, 17(14), 6460.
  • Yara, 2025. MV Yara Birkeland.https://www.yara.com/. Erişim Tarihi: 08 Ekim 2025.

Yıl 2025, Sayı: 3, 1 - 17, 29.12.2025

Öz

Kaynakça

  • Acciaro, M., Vanelslander, T., Sys, C., Ferrari, C., Roumboutsos, A., Giuliano, G., ... & Kapros, S. (2014). Environmental sustainability in seaports: a framework for successful innovation. Maritime Policy & Management, 41(5), 480-500.
  • Alamoush, A. S., Ölçer, A. I., & Ballini, F. (2022). Ports’ role in shipping decarbonisation: A common port incentive scheme for shipping greenhouse gas emissions reduction. Cleaner Logistics and Supply Chain, 3, 100021
  • Arıcan, O. H., Toprakçı, O., Ünal, A. U., & Özbağ, G. K. (2025). Analyzing Carbon Regulation Impacts on Maritime Sector Using Fuzzy Delphi–DEMATEL–ISM Approach. Systems, 13(11), 955.
  • Bahri, M. S. S., Shariff, S. S. R., & Yahya, N. (2025). Sustainable port operations and environmental initiatives in Malaysia: A focus on environmental sustainability. The Asian Journal of Shipping and Logistics, 41(1), 38-51.
  • Cullinane, K., & Yang, J. (2022). Evaluating the costs of decarbonizing the shipping industry: A review of the literature. Journal of Marine Science and Engineering, 10(7), 946.
  • Dong, J., Zeng, J., Yang, Y., & Wang, H. (2022). A review of law and policy on decarbonization of shipping. Frontiers in Marine Science, 9, 1076352.
  • He, Y., Yan, X., Fan, A., Yin, X., Meng, Q., Zhang, L., & Liu, P. (2024). Assessing the influence of actual LNG emission factors within the EU emissions trading system. Transport Policy, 159, 345-358.
  • Hellström, M., Rabetino, R., Schwartz, H., Tsvetkova, A., & Haq, S. H. U. (2024). GHG emission reduction measures and alternative fuels in different shipping segments and time horizons–A Delphi study. Marine Policy, 160, 105997.
  • Hossain, T., Adams, M., & Walker, T. R. (2021). Role of sustainability in global seaports. Ocean & Coastal Management, 202, 105435.
  • Issa, M., Ilinca, A., & Martini, F. (2022). Ship energy efficiency and maritime sector initiatives to reduce carbon emissions. Energies, 15(21), 7910.
  • Jia, H., Adland, R., Prakash, V., & Smith, T. (2017). Energy efficiency with the application of Virtual Arrival policy. Transportation Research Part D: Transport and Environment, 54, 50-60.
  • Khalifeh, M., & Caliskan, A. (2025). The role of port smartness in achieving sustainable development goals. Maritime Policy & Management, 52(1), 106-120.
  • Kotzampasakis, M. (2025). Maritime Emissions Trading in the EU: Systematic Literature Review and Policy Assessment. Transport Policy.
  • Lalla-Ruiz, E., Heilig, L., & Voß, S. (2019). Environmental sustainability in ports. In Sustainable transportation and smart logistics (pp. 65-89). Elsevier.
  • Lugovskyy, V., Skiba, A., & Terner, D. (2025). Unintended consequences of environmental regulation of maritime shipping: carbon leakage to air shipping. Journal of International Economics, 155, 104081.
  • Notteboom, T., Pallis, A., & Rodrigue, J.-P. (2022). Port economics, management and policy (1. baskı). Routledge.
  • OffshoreEnergy.2022. COSCO: ‘World’s first’ LNG dual-fuel VLCC delivered in China. https://www. offshore-energy.biz/cosco-worlds-first-lng-dual-fuel-vlcc-delivered-in-china/. Erişim Tarihi: 16 Aralık 2024.
  • Oh, J., Kim, D., Roussanaly, S., & Lim, Y. (2024). Greenhouse gas emissions of shipping with onboard carbon capture under the FuelEU Maritime regulation: a well-to-wake evaluation of different propulsion scenarios. Chemical Engineering Journal, 498, 155407.
  • Park, S., Lee, H., & Kim, D. (2024). Regulatory compliance and operational efficiency in maritime transport: Strategies and insights. Transport Policy, 155, 161-177.
  • Ramsay, W., Fridell, E., & Michan, M. (2023). Maritime energy transition: future fuels and future emissions. Journal of Marine Science and Application, 22(4), 681-692.
  • Rony, Z. I., Mofijur, M., Hasan, M. M., Rasul, M. G., Jahirul, M. I., Ahmed, S. F., ... & Show, P. L. (2023). Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals. Fuel, 338, 127220
  • Shi, J., Zhu, Y., Feng, Y., Yang, J., & Xia, C. (2023). A prompt decarbonization pathway for shipping: green hydrogen, ammonia, and methanol production and utilization in marine engines. Atmosphere, 14(3), 584
  • Sjerić, M., Perčić, M., Jovanović, I., & Vladimir, N. (2025). Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation. Journal of Marine Science and Application, 1-18.
  • Song, J., Xu, C., & Wang, C. (2024). Impacts of the carbon tax on green shipping supply chain under the port competition. Expert Systems, 41(5), e13229
  • Sun, M., Vortia, M. P., Xiao, G., & Yang, J. (2025). Carbon Policies and Liner Speed Optimization: Comparisons of Carbon Trading and Carbon Tax Combined with the European Union Emissions Trading Scheme. Journal of Marine Science and Engineering, 13(2), 204.
  • Taskar, B., Sasmal, K., & Yiew, L. J. (2023). A case study for the assessment of fuel savings using speed optimization. Ocean Engineering, 274, 113990.
  • Ülker, D., & Goksu, S. (2025). The Bilateral Impacts of Global Climate Change on the Shipping Sector: An Analysis of IPCC Scenarios and IMO’S GHG Emissions Reduction Strategies. The Role of Exergy and Energy in Sustainability, 85-98.
  • Vuskovic, B., Rudan, I., & Sumner, M. (2023). Fostering sustainable LNG bunkering operations: development of regulatory framework. Sustainability, 15(9), 7358.
  • Wan, Z., Nie, A., Chen, J., Pang, C., & Zhou, Y. (2025). Transforming ports for a low-carbon future: Innovations, challenges, and opportunities. Ocean & Coastal Management, 264, 107636
  • Wang, X., Liu, H., Zhang, J., Fu, X., Chen, D., Zhang, W., ... & He, K. (2025). Global shipping emissions from 1970 to 2021: Structural and spatial change driven by trade dynamics. One Earth, 8(4).
  • Wang, T., Cheng, P., & Wang, Y. (2025). How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area. Transport Policy, 160, 138- 153.
  • Wu, M., Li, K. X., Xiao, Y., & Yuen, K. F. (2022). Carbon Emission Trading Scheme in the shipping sector: Drivers, challenges, and impacts. Marine Policy, 138, 104989.
  • Xing, H., Stuart, C., Spence, S., & Chen, H. (2021). Alternative fuel options for low carbon maritime transportation: Pathways to 2050. Journal of Cleaner Production, 297, 126651.
  • Xu, L., & Chen, Y. (2025). Overview of sustainable maritime transport optimization and operations. Sustainability, 17(14), 6460.
  • Yara, 2025. MV Yara Birkeland.https://www.yara.com/. Erişim Tarihi: 08 Ekim 2025.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Deniz Mühendisliği (Diğer)
Bölüm İnceleme Makalesi
Yazarlar

Orçun Toprakçı

Ozan Hikmet Arıcan 0000-0003-2061-6112

Gönderilme Tarihi 16 Ekim 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 3

Kaynak Göster

APA Toprakçı, O., & Arıcan, O. H. (2025). DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ. Ulaştırma ve Altyapı(3), 1-17.
AMA Toprakçı O, Arıcan OH. DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ. Ulaştırma ve Altyapı. Aralık 2025;(3):1-17.
Chicago Toprakçı, Orçun, ve Ozan Hikmet Arıcan. “DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ”. Ulaştırma ve Altyapı, sy. 3 (Aralık 2025): 1-17.
EndNote Toprakçı O, Arıcan OH (01 Aralık 2025) DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ. Ulaştırma ve Altyapı 3 1–17.
IEEE O. Toprakçı ve O. H. Arıcan, “DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ”, Ulaştırma ve Altyapı, sy. 3, ss. 1–17, Aralık2025.
ISNAD Toprakçı, Orçun - Arıcan, Ozan Hikmet. “DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ”. Ulaştırma ve Altyapı 3 (Aralık2025), 1-17.
JAMA Toprakçı O, Arıcan OH. DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ. Ulaştırma ve Altyapı. 2025;:1–17.
MLA Toprakçı, Orçun ve Ozan Hikmet Arıcan. “DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ”. Ulaştırma ve Altyapı, sy. 3, 2025, ss. 1-17.
Vancouver Toprakçı O, Arıcan OH. DENİZYOLU VE KIYI YAPILARINDA YENİ YAKLAŞIMLARIN ÇEVRESEL SÜRDÜRÜLEBİLİRLİK PERSPEKTİFİNDEN DEĞERLENDİRİLMESİ. Ulaştırma ve Altyapı. 2025(3):1-17.