Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Sayı: 3, 32 - 46, 29.12.2025

Öz

Kaynakça

  • Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73(1), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1
  • Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day. https://doi.org/10.1177/058310248201400608
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773
  • Farhan, J., & Ong, G. P. (2018). Forecasting seasonal container throughput at international ports using SARIMA models. Maritime Economics & Logistics, 20(1), 131–148. https://doi.org/10.1057/mel.2016.13
  • Gao, W., Xiao, T., Zou, L., Li, H., & Gu, S. (2024). Analysis and prediction of atmospheric environmental quality based on the autoregressive ıntegrated moving average model (ARIMA Model) in Hunan Province, China. Sustainability, 16(19), 8471.
  • Geweke, J. ve S. Porter-Hudak (1983). “The Estimation and Application of Long Memory Time Series Models.” Journal of Time Series Analysis, 4: 221–238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
  • Gosasang, V., Chandraprakaikul, W., & Kiattisin, S. (2011). A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port. The Asian Journal of Shipping and Logistics, 27(3), 463-482. https://doi.org/10.1016/S2092 5212(11)80022-2
  • Granger, C. W. ve Joyeux, R. (1980). “An Introduction to Long‐Memory Time Series Models and Fractional Differencing.” Journal of Time Series Analysis, 1(1): 15–29. https://doi.org/10.1111/j.1467-9892.1980. tb00297.x
  • Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press. https://doi.org/10.1002/ wilm.42820030622
  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165
  • https://denizcilikistatistikleri.uab.gov.tr/konteyner-istatistikleri
  • Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259. https://doi.org/10.1016/0165-1765(80)90024-5
  • Kumar, U., & Jain, V. K. (2010). ARIMA forecasting of ambient air pollutants (O 3, NO, NO 2 and CO). Stochastic Environmental Research and Risk Assessment, 24(5). https://doi.org/10.1007/s00477-009- 0361-8
  • Lee, E.; Kim, D.; Bae, H. Container Volume Prediction Using Time-Series Decomposition with a Long Short-Term Memory Models. Appl. Sci. 2021, 11, 8995. https:// doi.org/10.3390/app11198995
  • Lewis, C. D. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. London: Butterworths. https://doi.org/10.1002/for.3980020210
  • Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303. https://doi.org/10.1093/biomet/65.2.297
  • Lloyd’s List. (2025). One Hundred Container Ports 2025. Lloyd’s List Intelligence. Retrieved from https:// www.lloydslist.com/one-hundred-container-ports-2025 accessed on Oct 05, 2025.
  • Ma, Y., & Li, J. (2024). Recognition and Prediction of Multi-Level Handling Complexity at Automated Terminals Based on ARIMA. Journal of Marine Science and Engineering, 12(7), 1201. https://doi. org/10.3390/jmse12071201
  • Mo, L., Xie, L., Jiang, X., Teng, G., Xu, L., & Xiao, J. (2018). GMDH-based hybrid model for container throughput forecasting: Selective combination forecasting in nonlinear subseries. Applied Soft Computing, 62, 478–490. https://doi.org/10.1016/j.asoc.2017.10.033
  • Munim, Z.H., Solak Fışkın, C., Nepal, B., & Chowdhury, M.M.H. (2023) – Forecasting container throughput of major Asian ports using the Prophet and hybrid time series models, Asian Journal of Shipping and Logistics. https://doi.org/10.1016/j.ajsl.2023.02.004
  • Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335
  • Rashed, Y., Meersman, H., Van de Voorde, E., & Vanelslander, T. (2017). Short-term forecast of container throughout: An ARIMA-intervention model for the port of Antwerp. Maritime Economics & Logistics, 19(4), 749-764. https://doi.org/10.1057/mel.2016.8
  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
  • Theil, H., Beerens, G. A. C., Tilanus, C. G., & De Leeuw, C. B. (1966). Applied economic forecasting (Vol. 4). Amsterdam: North-Holland Publishing Company.
  • Yalnız, T., Çetin, O., & Yalnız, Z. (2025). The Effect of Inspection on Competition in Maritime Transportation: An Analysis of Oil Tankers. JEMS Maritime Sci, 13(2), 144-157. https://doi.org/10.4274/jems.2025.36539.
  • Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10(3), 251–270. https://doi.org/10.108 0/07350015.1992.10509904

KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU

Yıl 2025, Sayı: 3, 32 - 46, 29.12.2025

Öz

Deniz taşımacılığı ekonomik büyüme ve kalkınma üzerinde önemli bir etkiye sahip temel sektörlerden biridir. Bu sektörün alt bileşenlerinden biri olan konteyner taşımacılığı ise, küresel ticaretin verimliliğini artıran ve tedarik zincirlerinin sürekliliğini sağlayan en dinamik alanlardan biridir. Konteyner taşımacılığına yönelik öngörüler, ulaştırma ve altyapı politikalarının planlanmasında önemli bir yer tutmaktadır. Türkiye, Asya ile Avrupa arasında yer alan stratejik konumu nedeniyle küresel tedarik zincirinde önemli bir lojistik merkez haline gelmiş; Marmara Bölgesi ise ülkenin dış ticaret yükünün büyük kısmını üstlenmiştir. Bu yapı içerisinde kara, deniz ve demiryolu hatlarının kesiştiği Kocaeli ili, sanayi üretimi ve liman faaliyetleri arasındaki etkileşimde kritik bir rol üstlenmektedir. Bu çalışmada, T.C. Ulaştırma ve Altyapı Bakanlığı’nın resmî internet sitesinde yayımlanan istatistiklerden elde edilen 2004–2024 dönemi konteyner elleçleme verileri kullanılarak, ARFIMA (Autoregressive Fractionally Integrated Moving Average) modeli aracılığıyla 2025–2030 dönemi için Kocaeli ilindeki konteyner limanlarına ilişkin öngörüler oluşturulmuştur. Model sonuçlarına göre, Kocaeli limanlarında konteyner elleçleme hacminin 2024 yılında 2,32 milyon TEU iken, 2030 yılında 3,10 milyon TEU düzeyine ulaşması beklenmektedir. Bu artış, yaklaşık %34’lük bir artışakarşılık gelmekte ve orta–uzun vadede istikrarlı bir kapasite artışının süreceğini göstermektedir. Bu tahminlerin geçerliliği, modelin istatistiksel performans ölçütleriyle de doğrulanmıştır. Theil’in U katsayısının (U=0,0218) 0,5’in altında olması, ARFIMA modelinin yüksek öngörü doğruluğunu ve uzun dönemli bağımlılık yapısını başarıyla yakaladığını göstermektedir. Elde edilen tahmin sonuçları, yalnızca istatistiksel bir öngörü sunmakla kalmayıp, aynı zamanda bölgesel lojistik kapasitenin gelecekteki gelişimine ilişkin stratejik bir perspektif de ortaya koymaktadır. Bu kapsamda ulaşılan bulgular, Türkiye’nin “Kalkınma Yolu Projesi” vizyonuyla uyumlu olarak, Kocaeli limanlarında öngörülen konteyner elleçleme trafiği artışının etkin biçimde yönetilebilmesi için ulaştırma ve altyapı yatırımlarında karar vericilere ileriye dönük planlama süreçlerinde somut bir rehber niteliği taşımaktadır. Çalışma bu yönüyle literatüre hem metodolojik hem de uygulamalı katkı sağlamaktadır.

Kaynakça

  • Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73(1), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1
  • Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day. https://doi.org/10.1177/058310248201400608
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773
  • Farhan, J., & Ong, G. P. (2018). Forecasting seasonal container throughput at international ports using SARIMA models. Maritime Economics & Logistics, 20(1), 131–148. https://doi.org/10.1057/mel.2016.13
  • Gao, W., Xiao, T., Zou, L., Li, H., & Gu, S. (2024). Analysis and prediction of atmospheric environmental quality based on the autoregressive ıntegrated moving average model (ARIMA Model) in Hunan Province, China. Sustainability, 16(19), 8471.
  • Geweke, J. ve S. Porter-Hudak (1983). “The Estimation and Application of Long Memory Time Series Models.” Journal of Time Series Analysis, 4: 221–238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
  • Gosasang, V., Chandraprakaikul, W., & Kiattisin, S. (2011). A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port. The Asian Journal of Shipping and Logistics, 27(3), 463-482. https://doi.org/10.1016/S2092 5212(11)80022-2
  • Granger, C. W. ve Joyeux, R. (1980). “An Introduction to Long‐Memory Time Series Models and Fractional Differencing.” Journal of Time Series Analysis, 1(1): 15–29. https://doi.org/10.1111/j.1467-9892.1980. tb00297.x
  • Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press. https://doi.org/10.1002/ wilm.42820030622
  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165
  • https://denizcilikistatistikleri.uab.gov.tr/konteyner-istatistikleri
  • Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259. https://doi.org/10.1016/0165-1765(80)90024-5
  • Kumar, U., & Jain, V. K. (2010). ARIMA forecasting of ambient air pollutants (O 3, NO, NO 2 and CO). Stochastic Environmental Research and Risk Assessment, 24(5). https://doi.org/10.1007/s00477-009- 0361-8
  • Lee, E.; Kim, D.; Bae, H. Container Volume Prediction Using Time-Series Decomposition with a Long Short-Term Memory Models. Appl. Sci. 2021, 11, 8995. https:// doi.org/10.3390/app11198995
  • Lewis, C. D. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. London: Butterworths. https://doi.org/10.1002/for.3980020210
  • Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303. https://doi.org/10.1093/biomet/65.2.297
  • Lloyd’s List. (2025). One Hundred Container Ports 2025. Lloyd’s List Intelligence. Retrieved from https:// www.lloydslist.com/one-hundred-container-ports-2025 accessed on Oct 05, 2025.
  • Ma, Y., & Li, J. (2024). Recognition and Prediction of Multi-Level Handling Complexity at Automated Terminals Based on ARIMA. Journal of Marine Science and Engineering, 12(7), 1201. https://doi. org/10.3390/jmse12071201
  • Mo, L., Xie, L., Jiang, X., Teng, G., Xu, L., & Xiao, J. (2018). GMDH-based hybrid model for container throughput forecasting: Selective combination forecasting in nonlinear subseries. Applied Soft Computing, 62, 478–490. https://doi.org/10.1016/j.asoc.2017.10.033
  • Munim, Z.H., Solak Fışkın, C., Nepal, B., & Chowdhury, M.M.H. (2023) – Forecasting container throughput of major Asian ports using the Prophet and hybrid time series models, Asian Journal of Shipping and Logistics. https://doi.org/10.1016/j.ajsl.2023.02.004
  • Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335
  • Rashed, Y., Meersman, H., Van de Voorde, E., & Vanelslander, T. (2017). Short-term forecast of container throughout: An ARIMA-intervention model for the port of Antwerp. Maritime Economics & Logistics, 19(4), 749-764. https://doi.org/10.1057/mel.2016.8
  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
  • Theil, H., Beerens, G. A. C., Tilanus, C. G., & De Leeuw, C. B. (1966). Applied economic forecasting (Vol. 4). Amsterdam: North-Holland Publishing Company.
  • Yalnız, T., Çetin, O., & Yalnız, Z. (2025). The Effect of Inspection on Competition in Maritime Transportation: An Analysis of Oil Tankers. JEMS Maritime Sci, 13(2), 144-157. https://doi.org/10.4274/jems.2025.36539.
  • Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10(3), 251–270. https://doi.org/10.108 0/07350015.1992.10509904

CONTAINER THROUGHPUT FORECASTS FOR TRANSPORT AND INFRASTRUCTURE PLANNING IN CONTAINER PORTS: 2025–2030 KOCAELİ PORT PROJECTION

Yıl 2025, Sayı: 3, 32 - 46, 29.12.2025

Öz

Maritime transportation is one of the key sectors with a significant impact on economic growth and development. Among its subcomponents, container shipping stands out as one of the most dynamic areas, enhancing the efficiency of global trade and ensuring the continuity of supply chains. Forecasts related to container shipping play a critical role in the planning of transportation and infrastructure policies. Owing to its strategic location between Asia and Europe, Türkiye has become an important logistics hub within the global supply chain, while the Marmara Region handles the majority of the country’s foreign trade volume. Within this structure, the province of Kocaeli where road, maritime, and rail transport networks intersect plays a pivotal role in the interaction between industrial production and port operations. In this study, container throughput data for the period 2004–2024, obtained from the official statistics published by the Ministry of Transport and Infrastructure of the Republic of Türkiye, were used to generate forecasts for 2025–2030 regarding container ports in Kocaeli. The forecasts were produced using the ARFIMA (Autoregressive Fractionally Integrated Moving Average) model. According to the model results, the container handling volume at Kocaeli ports is expected to increase from 2.32 million TEUs in 2024 to 3.10 million TEUs by 2030. This represents approximately a 34% increase, indicating a steady medium- to long-term capacity expansion. The validity of these forecasts was confirmed through the model’s statistical performance measures. Theil’s U coefficient (U = 0.0218), being well below 0.5, demonstrates the ARFIMA model’s high predictive accuracy and its strong ability to capture long-term dependencies. The obtained forecasting results not only provide a statistical projection but also offer a strategic perspective on the future development of regional logistics capacity. In this context, the findings align with Türkiye’s “Development Road Project” vision and serve as a concrete guide for policymakers in planning future transportation and infrastructure investments to effectively manage the projected growth in container throughput at Kocaeli ports. In this regard, the study contributes to the literature both methodologically and empirically.

Kaynakça

  • Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73(1), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1
  • Box, G. E. P., & Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day. https://doi.org/10.1177/058310248201400608
  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773
  • Farhan, J., & Ong, G. P. (2018). Forecasting seasonal container throughput at international ports using SARIMA models. Maritime Economics & Logistics, 20(1), 131–148. https://doi.org/10.1057/mel.2016.13
  • Gao, W., Xiao, T., Zou, L., Li, H., & Gu, S. (2024). Analysis and prediction of atmospheric environmental quality based on the autoregressive ıntegrated moving average model (ARIMA Model) in Hunan Province, China. Sustainability, 16(19), 8471.
  • Geweke, J. ve S. Porter-Hudak (1983). “The Estimation and Application of Long Memory Time Series Models.” Journal of Time Series Analysis, 4: 221–238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
  • Gosasang, V., Chandraprakaikul, W., & Kiattisin, S. (2011). A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port. The Asian Journal of Shipping and Logistics, 27(3), 463-482. https://doi.org/10.1016/S2092 5212(11)80022-2
  • Granger, C. W. ve Joyeux, R. (1980). “An Introduction to Long‐Memory Time Series Models and Fractional Differencing.” Journal of Time Series Analysis, 1(1): 15–29. https://doi.org/10.1111/j.1467-9892.1980. tb00297.x
  • Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press. https://doi.org/10.1002/ wilm.42820030622
  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165
  • https://denizcilikistatistikleri.uab.gov.tr/konteyner-istatistikleri
  • Jarque, C. M., & Bera, A. K. (1980). Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6(3), 255–259. https://doi.org/10.1016/0165-1765(80)90024-5
  • Kumar, U., & Jain, V. K. (2010). ARIMA forecasting of ambient air pollutants (O 3, NO, NO 2 and CO). Stochastic Environmental Research and Risk Assessment, 24(5). https://doi.org/10.1007/s00477-009- 0361-8
  • Lee, E.; Kim, D.; Bae, H. Container Volume Prediction Using Time-Series Decomposition with a Long Short-Term Memory Models. Appl. Sci. 2021, 11, 8995. https:// doi.org/10.3390/app11198995
  • Lewis, C. D. (1982). Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting. London: Butterworths. https://doi.org/10.1002/for.3980020210
  • Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65(2), 297–303. https://doi.org/10.1093/biomet/65.2.297
  • Lloyd’s List. (2025). One Hundred Container Ports 2025. Lloyd’s List Intelligence. Retrieved from https:// www.lloydslist.com/one-hundred-container-ports-2025 accessed on Oct 05, 2025.
  • Ma, Y., & Li, J. (2024). Recognition and Prediction of Multi-Level Handling Complexity at Automated Terminals Based on ARIMA. Journal of Marine Science and Engineering, 12(7), 1201. https://doi. org/10.3390/jmse12071201
  • Mo, L., Xie, L., Jiang, X., Teng, G., Xu, L., & Xiao, J. (2018). GMDH-based hybrid model for container throughput forecasting: Selective combination forecasting in nonlinear subseries. Applied Soft Computing, 62, 478–490. https://doi.org/10.1016/j.asoc.2017.10.033
  • Munim, Z.H., Solak Fışkın, C., Nepal, B., & Chowdhury, M.M.H. (2023) – Forecasting container throughput of major Asian ports using the Prophet and hybrid time series models, Asian Journal of Shipping and Logistics. https://doi.org/10.1016/j.ajsl.2023.02.004
  • Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335
  • Rashed, Y., Meersman, H., Van de Voorde, E., & Vanelslander, T. (2017). Short-term forecast of container throughout: An ARIMA-intervention model for the port of Antwerp. Maritime Economics & Logistics, 19(4), 749-764. https://doi.org/10.1057/mel.2016.8
  • Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591
  • Theil, H., Beerens, G. A. C., Tilanus, C. G., & De Leeuw, C. B. (1966). Applied economic forecasting (Vol. 4). Amsterdam: North-Holland Publishing Company.
  • Yalnız, T., Çetin, O., & Yalnız, Z. (2025). The Effect of Inspection on Competition in Maritime Transportation: An Analysis of Oil Tankers. JEMS Maritime Sci, 13(2), 144-157. https://doi.org/10.4274/jems.2025.36539.
  • Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, 10(3), 251–270. https://doi.org/10.108 0/07350015.1992.10509904
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Deniz Ulaşımı
Bölüm Araştırma Makalesi
Yazarlar

Talha Yalnız 0000-0002-4907-1075

Zehra Yalnız 0000-0003-2633-2022

Gönderilme Tarihi 20 Ekim 2025
Kabul Tarihi 15 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 3

Kaynak Göster

APA Yalnız, T., & Yalnız, Z. (2025). KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU. Ulaştırma ve Altyapı(3), 32-46.
AMA Yalnız T, Yalnız Z. KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU. Ulaştırma ve Altyapı. Aralık 2025;(3):32-46.
Chicago Yalnız, Talha, ve Zehra Yalnız. “KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU”. Ulaştırma ve Altyapı, sy. 3 (Aralık 2025): 32-46.
EndNote Yalnız T, Yalnız Z (01 Aralık 2025) KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU. Ulaştırma ve Altyapı 3 32–46.
IEEE T. Yalnız ve Z. Yalnız, “KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU”, Ulaştırma ve Altyapı, sy. 3, ss. 32–46, Aralık2025.
ISNAD Yalnız, Talha - Yalnız, Zehra. “KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU”. Ulaştırma ve Altyapı 3 (Aralık2025), 32-46.
JAMA Yalnız T, Yalnız Z. KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU. Ulaştırma ve Altyapı. 2025;:32–46.
MLA Yalnız, Talha ve Zehra Yalnız. “KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU”. Ulaştırma ve Altyapı, sy. 3, 2025, ss. 32-46.
Vancouver Yalnız T, Yalnız Z. KONTEYNER LİMANLARINDA ULAŞTIRMA VE ALTYAPI PLANLAMASI İÇİN KONTEYNER ELLEÇLEME ÖNGÖRÜLERİ: 2025–2030 DÖNEMİ KOCAELİ PROJEKSİYONU. Ulaştırma ve Altyapı. 2025(3):32-46.