Araştırma Makalesi
BibTex RIS Kaynak Göster

İstanbul'da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları

Yıl 2025, Cilt: 8 Sayı: 2, 98 - 108, 24.12.2025

Öz

İstanbul, Türkiye'nin enerji tüketiminin yaklaşık %20'sini karşılayan ve ekonomik ağırlığı yüksek bir metropoldür. Fosil yakıtlara bağımlılık, artan nüfus ve sanayileşme nedeniyle sürdürülebilir enerji kaynaklarına geçiş kritik önem taşımaktadır. Coğrafi konumu, İstanbul'u güneş, rüzgar, biyokütle, jeotermal ve hidroelektrik gibi yenilenebilir kaynakların kullanımına yönlendirse de mevcut kapasite ihtiyacı karşılamaktan uzaktır.Güneş Enerjisi: Yıllık 2.600 saat güneşlenme süresine rağmen potansiyel sınırlıdır. Çatı tipi sistemler ve büyük santraller (İstanbul Havalimanı Santrali, yılda 65 milyon kWh) öne çıkan projelerdir. Rüzgar Enerjisi: Çatalca ve Silivri'deki santraller (50 MW kapasite) şehrin ihtiyacını destekler, ancak yoğun yapılaşma ve altyapı eksikliği yaygınlaşmayı engellemektedir. Biyokütle ve Atık Enerjisi: Günlük 6 milyon ton atık, İSTAÇ tesisleri gibi projelerle enerjiye dönüştürülerek hem çevresel hem ekonomik fayda sağlanmaktadır. Jeotermal ve Hidroelektrik: Sınırlı kaynaklara sahip İstanbul, çevresindeki barajlar (Terkos, Büyükçekmece) ve jeotermal ısıtma projeleriyle enerji çeşitliliğini artırmaktadır. İstanbul Büyükşehir Belediyesi (İBB), Sürdürülebilir Enerji ve İklim Eylem Planı ile 2030’a kadar sera gazı emisyonlarını %40 azaltmayı, yenilenebilir enerji payını artırmayı hedeflemektedir. 2024-2028 İstanbul Bölge Planı, yeşil ekonomiye geçişi hızlandıracak 25 tedbir ve 12 proje öngörülmektedir. Ancak, finansman eksikliği, yetki dağılımındaki belirsizlikler ve teknolojik altyapı yetersizliği başlıca engeller olarak öne çıkmaktadır. Özetle, İstanbul’un enerji dönüşümü için kamu-özel iş birliği, merkezi politikaların yerelle uyumu ve vatandaş bireysel katılımı şarttır. Mevcut projelerin ölçeklendirilmesi, teşviklerin artırılması ve akıllı şehir uygulamalarıyla sürdürülebilir bir enerji geleceği mümkün görünmektedir.

Kaynakça

  • Sharafi, A., Chen, C., Sun, J.-Q.Fortier, M.-O., 2024. Carbon footprint of piezoelectrics from multi-layer PZT stacks to piezoelectric energy harvesting systems in roads. Science, 27(10): p. 110786.
  • Zhang, H., Jiang, S., Duan, G., Li, J., Liu, K., Zhou, C.Hou, H., 2014. Heat-resistant polybenzoxazole nanofibers made by electrospinning. European polymer journal, 50: p. 61-68.
  • Andriopoulou, S.A., 2012. review on energy harvesting from roads.
  • https://iea.blob.core.windows.net/assets/5b169aa1-bc88-4c96-b828aaa50406ba80/GlobalEnergyReview2025.pdf, erişim tarihi:31.10.2025
  • https://iea.blob.core.windows.net/assets/beceb956-0dcf-4d73-89fe-1310e3046d68/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR. pdf erişim tarihi:31.10.2025
  • Outlook IE. International Energy Outlook 2023 with projections to 2050. 2023, Available from: https://www.eia.gov/outlooks/ieo/pdf/IEO2023_Release_Presentation.pdf.
  • https://dosya.kmu.edu.tr/sbe/userfiles/file/tezler/iktisat/sibelkeskink%C4%B1l%C4%B1c.pdf, erişim tarihi:31.10.2025.
  • Ellabban, O., Abu-Rub, H.Blaabjerg, F., 2014. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39: p. 748-764.
  • Aslan, E., Bilgin, M.Z., Erfidan, T., 2016. Piezoseramik Malzemelerle Elektrik Enerjisi Üretilmesi ve Depolanması. İleri Teknoloji Bilimleri Dergisi, 5(2).
  • Kumar, P., 2013. Piezo-smart roads. International Journal of Enhanced Research in Science Technology and Engineering. Electronics Engineering, 2(6): p. 65-70.
  • Inc MM, 1997. Guide to modern piezoelectric ceramics, review. Bedford, Morgan Matroc Inc. 7-9
  • Chua, Y.S., Kim, Y., Li, M., Aventian, G.D. Satyanaga, A., 2024. A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways. Electronics. 13: DOI: 10.3390/electronics13244946.
  • https://dergipark.org.tr/en/download/article-file/1828745, erişim tarihi:31.10.2025.
  • Heywang, W., Lubitz, K.Wersing, W., 2008. Piezoelectricity: evolution and future of a technology. Vol. 114. Springer Science & Business Media.
  • Tressler, J.F., Alkoy, S.Newnham, R.E.., 1998. Piezoelectric sensors and sensor materials. Journal of electroceramics, 2: p. 257-272.
  • Moussa, R.R.., 2019. The effect of piezo-bumps on energy generation and reduction of the global carbon emissions.
  • https://www.sciencedirect.com/topics/engineering/piezoelectric-effect (chapter) erişim tarihi:31.10.2025.
  • Granstrom, J., Feenstra, J., Sodano, H.A.Farinholt, K.., 2007. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart materials and structures, 16(5): p. 1810.
  • Dagdeviren, C., Li, Z.Wang, Z.L.., 2017. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. Annual Review of Biomedical Engineering, 19(Volume 19, 2017): p. 85-108.
  • Anton, S.R.Sodano, H.A.., 2007. A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3): p. R1.
  • Walubita, L.F., Sohoulande Djebou, D.C., Faruk, A.N., Lee, S.I., Dessouky, S.Hu, X.., 2018. Prospective of societal and environmental benefits of piezoelectric technology in road energy harvesting. Sustainability, 10(2): p. 383.
  • Woodcock, J., Edwards, P., Tonne, C., Armstrong, B.G., Ashiru, O., Banister, D., Beevers, S., Chalabi, Z., Chowdhury, Z., Cohen, A., Franco, O.H., Haines, A., Hickman, R., Lindsay, G., Mittal, I., Mohan, D., Tiwari, G., Woodward, A.Roberts, I.., 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. The Lancet, 374(9705): p. 1930-1943
  • EPA. Energy and the Environment, 2015,United States Environmental Protection Agency.
  • IPCC. Mitigation of climate change, in Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change 2014. p. 147.
  • İmrak, C.E., Gerdemeli, İ., Asansörler ve Yürüyen Merdivenler. 2000: İstanbul Birsen Yayımevi.
  • Elkadeem, M.R., Wang, S., Azmy, A.M., Atiya, E.G., Ullah, Z.Sharshir, S.W.., 2020. A systematic decision-making approach for planning and assessment of hybrid renewable energy-based microgrid with techno-economic optimization: A case study on an urban community in Egypt. Sustainable Cities and Society, 54: p. 102013.
  • Moussa, R.R., Mahmoud, A.H.Hatem, T.M.., 2020. A digital tool for integrating renewable energy devices within landscape elements: Energy-scape online application. Journal of Cleaner Production, 254: p. 119932.
  • Türker, Ö., 2009. Pzt/polimer esaslı aktif titreşim kontrolüne uygun akıllı kiriş tasarımı ve imalatı.
  • Heywang, W., Lubitz, K.Wersing, W., 2008. Piezoelectricity: evolution and future of a technology. Vol. 114. Springer Science & Business Media.
  • Kaya, M.M., Özyazıcı, E., et al. 2019. Kurşun Nikel Niyobat-Kurşun Zirkonat Titanat seramik kompozisyonun elektriksel ve elektromekanik özellikleri ve dönüştürücü uygulaması. AKÜ FEMÜBİD, , 19: p. 294-301.
  • Yoon, S.-H., Lee, Y.-H., Lee, S.-W.Lee, C.., 2008. Energy-harvesting characteristics of PZT-5A under gunfire shock. Materials Letters, 62(21-22): p. 3632-3635.
  • Arnau, A.Soares, D. 2009. Fundamentals of piezoelectricity, in Piezoelectric transducers and applications. 2009.,Springer. p. 1-38.
  • DIN E. 115-1: 2017: Safety of Escalators and Moving Walks—Part 1: Construction and Installation. German Institute for Standardisation (DIN), 2017.
  • Project Report-Piezoelectric Tiles Is a Sustainable Approach for Designing Interior Spaces and Creating Self- Piezoelectric Tiles Is a Sustainable Approach for Designing Interior Spaces and Creating Self-Sustain Projects . 2019. https://doi. org/10.1088/1755-1315/397/1/012020.
  • Oflaz, K., Oflaz, Z., Ozaytekin, I., Dincer, K.Barstugan, R.., 2021. Time and volume‐ratio effect on reusable polybenzoxazole nanofiber oil sorption capacity investigated via machine learning. Journal of Applied Polymer Science, 138(30): p. 50732.
  • Varposhti, A., Yousefzadeh, M., Kowsari, E., Latifi, M.., 2020. Enhancement of β‐phase crystalline structure and piezoelectric properties of flexible PVDF/ionic liquid surfactant composite nanofibers for potential application in sensing and self‐powering. Macromolecular Materials and Engineering, 305(3): p. 1900796.
  • https://tr.made-in-china.com/co_asiafuji/product_Factory-Directly-Shopping-Mall-Elevator-Escalator-Cost_uohoreorry.html, erişim tarihi:31.10.2025.

The Use of Renewable Energy Sources in Istanbul and Future Policy Directions

Yıl 2025, Cilt: 8 Sayı: 2, 98 - 108, 24.12.2025

Öz

Istanbul, a metropolis with significant economic weight, accounts for approximately 20% of Turkey’s energy consumption. Due to its dependence on fossil fuels, growing population, and industrialization, transitioning to sustainable energy sources has become critically important. While its geographical location encourages the use of renewable resources such as solar, wind, biomass, geothermal, and hydropower, the current capacity remains insufficient to meet demand. Solar Energy: Despite an annual 2,600 hours of sunshine, solar potential remains underutilized. Rooftop systems and large-scale projects like the Istanbul Airport Solar Plant (generating 65 million kWh annually) are notable initiatives. Wind Energy: Wind farms in Çatalca and Silivri (50 MW capacity) support the city’s energy needs, but dense urbanization and inadequate infrastructure hinder widespread adoption.Biomass and Waste-to-Energy: Daily 6 million tons of waste are converted into energy through projects like İSTAÇ facilities, offering both environmental and economic benefits. Geothermal and Hydropower: Istanbul’s limited geothermal resources are supplemented by nearby dams (e.g., Terkos, Büyükçekmece) and geothermal heating projects to diversify its energy mix. The Istanbul Metropolitan Municipality (IBB) aims to reduce greenhouse gas emissions by 40% by 2030 and increase renewable energy adoption through its Sustainable Energy and Climate Action Plan. The 2024-2028 Istanbul Regional Plan outlines 25 measures and 12 projects to accelerate the transition to a green economy. However, challenges such as funding gaps, unclear authority distribution, and insufficient technological infrastructure remain major obstacles. In conclusion, Istanbul’s energy transformation requires public-private collaboration, alignment of central policies with local needs, and citizen engagement. Scaling existing projects, enhancing incentives, and integrating smart-city technologies could pave the way for a sustainable energy future.

Kaynakça

  • Sharafi, A., Chen, C., Sun, J.-Q.Fortier, M.-O., 2024. Carbon footprint of piezoelectrics from multi-layer PZT stacks to piezoelectric energy harvesting systems in roads. Science, 27(10): p. 110786.
  • Zhang, H., Jiang, S., Duan, G., Li, J., Liu, K., Zhou, C.Hou, H., 2014. Heat-resistant polybenzoxazole nanofibers made by electrospinning. European polymer journal, 50: p. 61-68.
  • Andriopoulou, S.A., 2012. review on energy harvesting from roads.
  • https://iea.blob.core.windows.net/assets/5b169aa1-bc88-4c96-b828aaa50406ba80/GlobalEnergyReview2025.pdf, erişim tarihi:31.10.2025
  • https://iea.blob.core.windows.net/assets/beceb956-0dcf-4d73-89fe-1310e3046d68/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR. pdf erişim tarihi:31.10.2025
  • Outlook IE. International Energy Outlook 2023 with projections to 2050. 2023, Available from: https://www.eia.gov/outlooks/ieo/pdf/IEO2023_Release_Presentation.pdf.
  • https://dosya.kmu.edu.tr/sbe/userfiles/file/tezler/iktisat/sibelkeskink%C4%B1l%C4%B1c.pdf, erişim tarihi:31.10.2025.
  • Ellabban, O., Abu-Rub, H.Blaabjerg, F., 2014. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39: p. 748-764.
  • Aslan, E., Bilgin, M.Z., Erfidan, T., 2016. Piezoseramik Malzemelerle Elektrik Enerjisi Üretilmesi ve Depolanması. İleri Teknoloji Bilimleri Dergisi, 5(2).
  • Kumar, P., 2013. Piezo-smart roads. International Journal of Enhanced Research in Science Technology and Engineering. Electronics Engineering, 2(6): p. 65-70.
  • Inc MM, 1997. Guide to modern piezoelectric ceramics, review. Bedford, Morgan Matroc Inc. 7-9
  • Chua, Y.S., Kim, Y., Li, M., Aventian, G.D. Satyanaga, A., 2024. A Survey of Advanced Materials and Technologies for Energy Harvesting from Roadways. Electronics. 13: DOI: 10.3390/electronics13244946.
  • https://dergipark.org.tr/en/download/article-file/1828745, erişim tarihi:31.10.2025.
  • Heywang, W., Lubitz, K.Wersing, W., 2008. Piezoelectricity: evolution and future of a technology. Vol. 114. Springer Science & Business Media.
  • Tressler, J.F., Alkoy, S.Newnham, R.E.., 1998. Piezoelectric sensors and sensor materials. Journal of electroceramics, 2: p. 257-272.
  • Moussa, R.R.., 2019. The effect of piezo-bumps on energy generation and reduction of the global carbon emissions.
  • https://www.sciencedirect.com/topics/engineering/piezoelectric-effect (chapter) erişim tarihi:31.10.2025.
  • Granstrom, J., Feenstra, J., Sodano, H.A.Farinholt, K.., 2007. Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart materials and structures, 16(5): p. 1810.
  • Dagdeviren, C., Li, Z.Wang, Z.L.., 2017. Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. Annual Review of Biomedical Engineering, 19(Volume 19, 2017): p. 85-108.
  • Anton, S.R.Sodano, H.A.., 2007. A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3): p. R1.
  • Walubita, L.F., Sohoulande Djebou, D.C., Faruk, A.N., Lee, S.I., Dessouky, S.Hu, X.., 2018. Prospective of societal and environmental benefits of piezoelectric technology in road energy harvesting. Sustainability, 10(2): p. 383.
  • Woodcock, J., Edwards, P., Tonne, C., Armstrong, B.G., Ashiru, O., Banister, D., Beevers, S., Chalabi, Z., Chowdhury, Z., Cohen, A., Franco, O.H., Haines, A., Hickman, R., Lindsay, G., Mittal, I., Mohan, D., Tiwari, G., Woodward, A.Roberts, I.., 2009. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. The Lancet, 374(9705): p. 1930-1943
  • EPA. Energy and the Environment, 2015,United States Environmental Protection Agency.
  • IPCC. Mitigation of climate change, in Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change 2014. p. 147.
  • İmrak, C.E., Gerdemeli, İ., Asansörler ve Yürüyen Merdivenler. 2000: İstanbul Birsen Yayımevi.
  • Elkadeem, M.R., Wang, S., Azmy, A.M., Atiya, E.G., Ullah, Z.Sharshir, S.W.., 2020. A systematic decision-making approach for planning and assessment of hybrid renewable energy-based microgrid with techno-economic optimization: A case study on an urban community in Egypt. Sustainable Cities and Society, 54: p. 102013.
  • Moussa, R.R., Mahmoud, A.H.Hatem, T.M.., 2020. A digital tool for integrating renewable energy devices within landscape elements: Energy-scape online application. Journal of Cleaner Production, 254: p. 119932.
  • Türker, Ö., 2009. Pzt/polimer esaslı aktif titreşim kontrolüne uygun akıllı kiriş tasarımı ve imalatı.
  • Heywang, W., Lubitz, K.Wersing, W., 2008. Piezoelectricity: evolution and future of a technology. Vol. 114. Springer Science & Business Media.
  • Kaya, M.M., Özyazıcı, E., et al. 2019. Kurşun Nikel Niyobat-Kurşun Zirkonat Titanat seramik kompozisyonun elektriksel ve elektromekanik özellikleri ve dönüştürücü uygulaması. AKÜ FEMÜBİD, , 19: p. 294-301.
  • Yoon, S.-H., Lee, Y.-H., Lee, S.-W.Lee, C.., 2008. Energy-harvesting characteristics of PZT-5A under gunfire shock. Materials Letters, 62(21-22): p. 3632-3635.
  • Arnau, A.Soares, D. 2009. Fundamentals of piezoelectricity, in Piezoelectric transducers and applications. 2009.,Springer. p. 1-38.
  • DIN E. 115-1: 2017: Safety of Escalators and Moving Walks—Part 1: Construction and Installation. German Institute for Standardisation (DIN), 2017.
  • Project Report-Piezoelectric Tiles Is a Sustainable Approach for Designing Interior Spaces and Creating Self- Piezoelectric Tiles Is a Sustainable Approach for Designing Interior Spaces and Creating Self-Sustain Projects . 2019. https://doi. org/10.1088/1755-1315/397/1/012020.
  • Oflaz, K., Oflaz, Z., Ozaytekin, I., Dincer, K.Barstugan, R.., 2021. Time and volume‐ratio effect on reusable polybenzoxazole nanofiber oil sorption capacity investigated via machine learning. Journal of Applied Polymer Science, 138(30): p. 50732.
  • Varposhti, A., Yousefzadeh, M., Kowsari, E., Latifi, M.., 2020. Enhancement of β‐phase crystalline structure and piezoelectric properties of flexible PVDF/ionic liquid surfactant composite nanofibers for potential application in sensing and self‐powering. Macromolecular Materials and Engineering, 305(3): p. 1900796.
  • https://tr.made-in-china.com/co_asiafuji/product_Factory-Directly-Shopping-Mall-Elevator-Escalator-Cost_uohoreorry.html, erişim tarihi:31.10.2025.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yenilenebilir Enerji Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Osman Çekerek 0009-0005-5816-837X

Gönderilme Tarihi 22 Mayıs 2025
Kabul Tarihi 15 Eylül 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Çekerek, O. (2025). İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları. Ulusal Çevre Bilimleri Araştırma Dergisi, 8(2), 98-108.
AMA Çekerek O. İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları. UCBAD. Aralık 2025;8(2):98-108.
Chicago Çekerek, Osman. “İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları”. Ulusal Çevre Bilimleri Araştırma Dergisi 8, sy. 2 (Aralık 2025): 98-108.
EndNote Çekerek O (01 Aralık 2025) İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları. Ulusal Çevre Bilimleri Araştırma Dergisi 8 2 98–108.
IEEE O. Çekerek, “İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları”, UCBAD, c. 8, sy. 2, ss. 98–108, 2025.
ISNAD Çekerek, Osman. “İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları”. Ulusal Çevre Bilimleri Araştırma Dergisi 8/2 (Aralık2025), 98-108.
JAMA Çekerek O. İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları. UCBAD. 2025;8:98–108.
MLA Çekerek, Osman. “İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları”. Ulusal Çevre Bilimleri Araştırma Dergisi, c. 8, sy. 2, 2025, ss. 98-108.
Vancouver Çekerek O. İstanbul’da Yenilenebilir Enerji Kaynaklarının Kullanımı ve Gelecek Politikaları. UCBAD. 2025;8(2):98-108.
 ❤ UCBAD