Derleme
BibTex RIS Kaynak Göster

Sustainable Biowaste Management by Life Cycle Analysis and Circular Economy Approaches

Yıl 2024, Cilt: 7 Sayı: 2, 55 - 68, 03.01.2025

Öz

The United Nations recommends that waste management should be planned according to life cycle analysis (LCA) and circular economy (CE) approaches that take into account environmental, social and economic indicators in order to achieve sustainable development goals. LCA can be used to compare the possible environmental impacts of waste management alternatives. Municipal biowaste management is of particular importance due to its quantity and biodegradability. For this reason, the LCA method has been used in many studies to evaluate the potential environmental impacts of some alternative biowaste management scenario and to decide on sustainable biowaste management. A waste management system must be sustainable economically as well as environmentally. Economic sustainability of an waste management system is evaluated by benefit/cost analysis. Mainly income sources of biowaste management systems are marketing of process products and environmental incentives, as emphasized in many studies. The circular economy (CE) approach targets the cycle of matter that provides economic and environmental sustainability. In this study, the concepts of CE and LCA and their evaluation criteria are explained. In light of previous studies, the economic and environmental feasibility of the conversion processes used in biowaste management have been reveal regarding to LCA and CE approaches. As a result, consideration LCA and CE in municipal biowaste management planning; It provides the preservation of natural resources, reduction of emissions. Furthermore, a profitability product providing back to earth can obtained or renewable energy in a carbon-neutral process can be produced.

Kaynakça

  • Chen, D. M. C, Bodirsky, B. L., Krueger, T., Mishra, A. and Popp A., 2020, The World’s Growing Municipal Solid Waste: Trends and Impacts, Environ Chem Lett. Vol. 15, 074021.
  • Zambrano-Monserrate, M. A, Ruano, M. A., Ormeno-Candelario, V., 2021, Determinants Of Municipal Solid Waste: A Global Analysis by Countries’ Income Level, Environ. Sci. Pollut. Res. Vol. 28, 62421, 30.
  • Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., 2018. What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050, Urban Development. © Washington, DC: World Bank. web sayfası: https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a, erişim tarihi:27.06.2024
  • European Commission, A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment: Updated Bioeconomy Strategy, 2018, web sayfası: https://op.europa.eu/en/publication-detail/-/publication/edace3e3-e189-11e8-b690-01aa75ed71a1/, erişim tarihi: 27.06.2024
  • European Commission, A European Green Deal, 2019, web sayfası: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en, erişim tarihi: 27.06. 2024
  • European Commission, A New Circular Economy Action Plan, 2020, web sayfası: https://eur-lex.europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:52020DC0098, erişim tarihi: 27.06.2024.
  • European Parliament, Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives, Bruxelles, web sayfası: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098, erişim tarihi: 27.06.2024.
  • United Nations, Sustainable Development Goals, 2015, web sayfası: https://www.undp.org/sustainable-development-goals, erişim tarihi: 27.06.2024.
  • Le Pera, A., Sellaro, M., Bencivenni, E., D’Amico, F., 2022, Environmental Sustainability of an Integrate Anaerobic Digestion-Composting Treatment of Food Waste: Analysis of an Italian Plant in the Circular Bioeconomy Strategy, Waste Manag., Vol. 139, 341-351.
  • Saravanan, A., Karishma, S., Senthil, K. P., Gayathri, Rangasamy, 2023, A Review on Regeneration of Biowaste into Bio-Products and Bioenergy: Life Cycle Assessment and Circular Economy, Fuel Vol. 338, 127221.
  • Crome, C., Graf-Drasch, V., Hawlitschek, F., Zinsbacher, D., 2023, Circular Economy is Key! Designing a Digital Artifact to Foster Smarter Household Biowaste Sorting, Journal of Cleaner Production, Vol. 423, 138613.
  • Bocken, N. M. P., Pauw, I., Bakker, C., Van der Grinten, B., 2016, Product Design and Business Model Strategies for a Circular Economy, J. Ind. Product. Eng., Vol., 33 (5), 308-320.
  • Ghisellini, P., Cialani, C., Ulgiati, S., 2016, A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems, J. Clean. Prod., Vol. 114, 11-32.
  • Zeiss, R., Ixmeier, A., Recker, J., Kranz, J., 2021, Mobilising Information Systems Scholarship for a Circular Economy: Review, Synthesis, and Directions for Future Research, Inf. Syst. J., Vol. 31 (1), 148-183.
  • Cucina, M., 2023, Integrating Anaerobic Digestion and Composting to Boost Energy and Metarial Recovery from Organic Wastes in the Circular Economy Framework in Europe: A Review, Bioresource Technology Reports, Vol. 24, 101642.
  • Geisendorf, S., Pietrulla, F., 2017, The Circular Economy and Circular Economic Concepts-A Literature Analysis and Redefinition, Thunderbird Int. Bus. Rev., Vol. 60(5), 771–782.
  • Awasthi, M. K., Sarsaiya, S., Wainaina, S., Rajendran, K., et al., 2019, A Critical Review of Organic Manure Biorefinery Models Toward Sustainable Circular Bioeconomy: Technological Challenges, Advancements, Innovations, and Future Perspectives, Renew. Sust. Energ. Rev., Vol. 111, 115-131.
  • Singh, R., Paritosh, K., Pareek, N., Vivekanand, V., 2022, Integrated System of Anaerobic Digestion and Pyrolysis for Valorization of Agricultural and Food Waste towards Circular Bioeconomy: Review, Bioresour. Technol., Vol.360, 127596.
  • Khandelwal, H., Thalla, A.K., Kumar, S., Kumar, R., 2019, Life Cycle Assessment of Municipal Solid Waste Management Options for India, Bioresource Technology, Vol. 288, 121515.
  • Rajaeifar, M.A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B., Rafiee, S., 2015, Comparative Life Cycle Assessment of Different Municipal Solid Waste Management Scenarios in Iran, Renew. Sustain. Energy Rev., Vol. 51, 886-898.
  • Edwards, J., Othman, M., Crossin, E., Burn, S., 2018, Life Cycle Assessment to Compare the Environmental Impact of Seven Contemporary Food Waste Management Systems, Bioresource Technology, Vol. 248, Part A, 156-173.
  • Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.T., Suh, S., Weidema, B.P. and Pennington, D.W., 2004, Life cycle assessment. Part 1: Framework, goal and scope definition, inventory analysis and applications. Elsevier, Science Direct, Environment International 30(5), pp. 701-720.
  • Bhander, G., Christensen, T.H., Hauschild, M. Z., 2010, EASEWASTE-Life Cycle Modeling Capabilities for Waste Management Technologies, The International Journal of Life Cycle Assessment, Vol.15 (4), 403-416.
  • Demichelis, F., Tommasi, T. Deorsola, F. A., Marchisio, D., Mancini, G. and Fino, D., 2022, Life Cycle Assessment and Life Cycle Costing of Advanced Anaerobic Digestion of Organic Fraction Municipal Solid Waste, Chemosphere, Vol. 289, 133058.
  • Fernandez-Nava, Y., Río, Jd., Rodríguez-Iglesias J., Castrillon L., Maranon E., 2014, Life Cycle Assessment of Different Municipal Solid Waste Management Options: A Case Study of Asturias (Spain). Journal of Cleaner Production, Vol. 81, 178-189.
  • Yay, A. S. E., 2015, Application of Life Cycle Assessment (LCA) for Municipal Solid Waste Management: A Case Study of Sakarya, Journal of Cleaner Production, Vol. 94, 284-293.
  • Wang, J., Okopi, S. I., Ma, H., Wang, M., Chen, R., Tian, W., Xu, F., 2021, Life Cycle Assessment of the Integration of Anaerobic Digestion and Pyrolysis for Treatment of Municipal Solid Waste, Bioresource Technology, Vol. 338, 125486.
  • Feo, G.D., Ferrara, C., Iuliano, C., Grosso, A., 2016, LCA of the Collection, Transportation, Treatment and Disposal of Source Separated Municipal Waste: A Southern Italy Case Study, Sustainability, Vol. 8, 1084.
  • Petri, E., Heigl, E. M., Fasolini, A., Zeilerbauer, L., Giovannucci, M., Küçükağa, Y., Torri, C., Basile, F., Soavi F., 2024, Conversion of biodigestate into activated carbon for electrochemical application: Process performance and life cycle assessment, Carbon, Vol.226,119221.
  • Emery A., Davies A., Griffith A., Williams K., 2007, Environmental and Economic Modelling: A Case Study of Municipal Solid Waste Management Scenarios in Wales, Resources Conservation and Recycling, Vol. 49, 244-263.
  • Laurent, A. Bakas, I. Clavreul, J. Bernstad, A. Niero, Gentil E., Hauschild, M. Z. and Christensen, T. H., 2014, Review of LCA studies of solid waste management systems—Part I: Lessons learned and perspectives. Waste Manag, 34, 573-588.
  • Blengini, G.A., Fantoni, M., Busto, M., Genon, G. and Zanetti, C., 2012, Participatory Approach, Acceptability and Transparency of Waste Management LCAs: Case Studies of Torino and Cuneo, Waste Manag., Vol. 32, 1712-1721.
  • Pinto-Diaz, L., Gunkel-Grillon, P., Roth, E., 2018, Life Cycle Analysis for the Treatment of Organic Matter from Municipal Solid Waste: A Case Study of France, Conference Paper in WIT Transactions on Ecology and the Environment, Jun 2018, Naples, Italy.
  • Lu, H.R., Qu, X., Hanandeh, A.E., 2020, Towards a Better Environment-The Municipal Organic Waste Management in Brisbane: Environmental Life Cycle and Cost Perspective, Journal of Cleaner Production,Vol. 258, 120756.
  • Montejo, C., Tonini, D., Márquez, M. D. C., & Astrup, T. F., 2013, Mechanical–Biological Treatment: Performance and Potentials. An LCA of 8 MBT Plants Including Waste Characterization, Journal of Environmental Management, Vol.128, 661-673.
  • Richard, E. N., Hilonga, A., Machunda, R.L. and Njau, K.N., 2021, Life Cycle Analysis of Potential Municipal Solid Wastes Management Scenarios in Tanzania: The Case of Arusha City, Sustainable Environment Research, Vol. 31(1) 2-13.
  • Cherubini, F., Bargigli, S., Ulgiati, S., 2009, Life Cycle Assessment (LCA) of Waste Management Strategies: Landfilling, Sorting Plant and Incineration, Energy, Vol. 34, 2116-2123.
  • Nilsson-Djerf, J., McDougall, F., 2000, Social Factors in Sustainable Waste Management, Warmer Bull., Vol. 73, 18-20.
  • Morrissey, A. J., Browne, J., 2004, Waste Management Models and Their Application to Sustainable Waste Management, Waste Manage., Vol. 24, 297-308.
  • Lee, K. H., Oh, J., Chu, K. H., Kwon, S. H. and Yoo, S. S., 2017, Comparison and Evaluation of Large-Scale and On-Site Recycling Systems for Food Waste via Life Cycle Cost Analysis, Sustainability, Vol. 9, 2186.
  • Nguyen, D.D., Yeop, J.S., Choi, J., Kim, S., Chang, S.W., Jeon, B.H., Guo, W. and Ngo, H.H., 2017, A New Approach for Concurrently Improving Performance of South Korean Food Waste Valorization and Renewable Energy Recovery Via Dry Anaerobic Digestion Under Mesophilic and Thermophilic Conditions, Waste Manag., Vol. 66, 161-168.
  • Hogg D., 2002, Costs for municipal waste management in the EU, Eunomia Research and Consulting, European Commission, Brussels.
  • Haaren R., 2009, Large scale aerobic composting of source-separated organic wastes: a comparative study of environmental impacts, costs, and contextual effects. Foundation of Engineering and Applied Science, Earth and Environmental Engineering. Columbia University, New York.
  • Pandyaswargo, A.H., Gamaralalage, P.J.D., 2014, Financial Sustainability of Modern Composting: The Economically Optimal Scale for Municipal Waste Composting Plant in Developing Asia, Int. J. Recycl. Waste Agricult., Vol. 3(66), 1-14.
  • Ayodele, T.R., Ogunjuyigbe, A.S.O., Alao, M.A., 2018, Economic and Environmental Assessment of Electricity Generation Using Biogas from Organic Fraction of Municipal Solid Waste for The City of Ibadan, Nigeria Journal of Cleaner Production, Vol. 203, 718-735.
  • Babalola, M.A., 2020, A Benefit–Cost Analysis of Food and Biodegradable Waste Treatment Alternatives: The Case of Oita City, Japan, Sustainability, Vol. 12, 1916.
  • Stahel W.R., 2016, The Circular Economy, Nature, Vol. 531,435-438.
  • Zhang, A., Venkatesh, V., Liu, Y., Wan, M., Qu, T. and Huisingh, D., 2019. Barriers to Smart Waste Management for A Circular Economy in China, J. Clean. Prod., Vol. 240, 118198.
  • Salmenperä, H., Pitkänen K., Kautto, P., Saikku, L., 2021, Critical Factors for Enhancing The Circular Economy in Waste Management, J. Clean. Prod., Vol. 280, 124339.
  • European Commission. Europe 2020-A Strategy for Smart, Sustainable and Inclusive Growth; (COM no. 2020, 2010); Commission of European Communities: Brussels, Belgium, 2010.
  • European Commission. Commission of European Communities. Communication No. 398, 2014. Towards a Circular Economy: A Zero Waste Programme for Europe; COM no. 398; European Commission: Brussels, Belgium, 2014.
  • European Commission. Commission of European Communities. Communication No. 614, 2015. Closing the Loop-An EU Action Plan for the Circular Economy; COM no. 614; European Commission: Brussels, Belgium, 2015.
  • European Commission. Commission of European Communities. Communication No. 29, 2018. Monitoring Framework for the Circular Economy; COM no. 29; European Commission: Brussels, Belgium, 2018.
  • European Commission. Commission of European Communities. Communication No. 98, 2020. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; COM no. 98; European Commission: Brussels, Belgium, 2020.
  • 8. European Circular Economy Stakeholders Platform, Web Sayfası: Circular.economy.europa.eu/platform, erişim tarihi: 17.06.2024.
  • Ellen MacArthur Foundation, Growth within: A circular economy vision for a competitive Europe, 2015, web sayfası: www.ellenmacarthurfoundation.org/growth-within-a-circular-economy-vision-for-a-competitive-europe, erişim tarihi: 29.06.2024.
  • Nizami, A., Rehan, M., Waqas, M., Naqvi, M., Ouda, O., Shahzad K., Miandad R, Khan M.Z., Syamsiro M., Ismail I.M.I. and Pant D., 2017, Waste Biorefineries: Enabling Circular Economies in Developing Countries, Bioresour. Technol., Vol. 241, 1101-1117.
  • The Role of Waste-to-Energy in the Circular Economy; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, European Commission: Brussels, Belgium, 2017.
  • Fagerström, A., Seadi, A., Rasi, T., Briseid, S., 2018, The Role of Anaerobic Digestion and Biogas in the Circular Economy, IEA Bioenergy Task 37, Edited by: Jerry D. Murphy, MaREI Centre, University College Cork, Ireland.
  • Monlau,F.,Francavilla,M.,Sambusiti,C.,Antoniou,N.,Solhy, A., Libutti A., Zabaniotou A., Barakat A. and Monteleone M., 2016, Toward a Functional Integration of Anaerobic Digestion and Pyrolysis or a Sustainable Resource Management, Comparison Between Solid-Digestate and Its Derived Pyrochar as Soil Amendment, Appl. Energy., Vol.169, 652-662.
  • Ellen MacArthur Foundation, 2013, Towards the Circular Economy: Economic and Business Retionale for an Accelerated Transition, Web sayfası: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf, erişim tarihi: 27.06.2024.
  • Wellinger, A., Murphy, J.D., Baxter, D., 2013, The Biogas Handbook: Science, Production and Applications, Woodhead Publishing limited, New Delhi.
  • Cossu, R., 2016, Back to Earth Sites: From ‘‘Nasty and Unsightly” Landfilling to Final Sink and Geological Repository, Editorial, Waste Management, Vol. 55, 1-2.
  • Li, Y., Han, Y., Zhang, Y., Luo, W., Li, G., 2020, Anaerobic Digestion of Different Agricultural Wastes: a Techno-Economic assessment, Bioresour. Technol.,Vol. 315, 123836.

Yaşam Döngüsü Analizi ve Döngüsel Ekonomi Yaklaşımları ile Sürdürülebilir Biyoatık Yönetimi

Yıl 2024, Cilt: 7 Sayı: 2, 55 - 68, 03.01.2025

Öz

Birleşmiş Milletler, sürdürülebilir kalkınma hedeflerine ulaşmak için atık yönetiminin çevresel, sosyal ve ekonomik göstergeleri dikkate alan, yaşam döngüsü analizi (life cycle analysis; LCA) ve döngüsel ekonomi (circular economy; CE) yaklaşımlarına göre planlanmasını önermektedir. LCA, atık yönetim alternatiflerinin olası çevresel etkilerini karşılaştırmak için kullanılabilir. Kentsel biyoatıkların miktarı ve biyolojik bozunabilirliği nedeniyle yönetimi özel önem taşımaktadır. Bu nedenle, bir çok çalışmada farklı biyoatık yönetim süreçlerinin potansiyel çevresel etkilerini değerlendirmek ve sürdürülebilir biyoatık yönetimine karar vermek için LCA yöntemi kullanılmıştır. Bir atık yönetim sistemi, çevresel olduğu kadar ekonomik olarak da sürdürülebilir olmalıdır. Atık yönetim faaliyetlerinin ekonomik sürdürülebilirliği gelir/gider dengesinin sağlanmasını gerektirir. Biyoatık yönetim sistemlerinin en önemli gelir kaynağı, proses ürünlerinin pazarlanması ve çevresel teşviklerdir. CE yaklaşımı ise, ekonomik ve çevresel sürdürülebilirliği sağlayan madde döngüsünü esas alır. Bu çalışmada CE ve LCA kavramları değerlendirme kriterleri ile birlikte tanımlanmış ve daha önce yapılan çalışmalar ışında, biyoatık yönetiminde kullanılan dönüşüm süreçlerinin LCA ve CE yaklaşımlarına göre ekonomik ve çevresel sürdürülebilirliği ortaya konmuştur. Sonuç olarak, kentsel biyoatık yönetim planlamasında LCA ve CE yaklaşımlarının dikkate alınması doğal kaynakların korunmasına ve emisyonların azalmasına katkı sağlarken, aynı zamanda da madde döngüsünü doğaya dönüş ile kapatabilecek toprak iyileştirici değerli bir ürün veya karbon nötr bir proseste enerji elde edilebilir.

Kaynakça

  • Chen, D. M. C, Bodirsky, B. L., Krueger, T., Mishra, A. and Popp A., 2020, The World’s Growing Municipal Solid Waste: Trends and Impacts, Environ Chem Lett. Vol. 15, 074021.
  • Zambrano-Monserrate, M. A, Ruano, M. A., Ormeno-Candelario, V., 2021, Determinants Of Municipal Solid Waste: A Global Analysis by Countries’ Income Level, Environ. Sci. Pollut. Res. Vol. 28, 62421, 30.
  • Kaza, S., Yao, L., Bhada-Tata, P., Van Woerden, F., 2018. What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050, Urban Development. © Washington, DC: World Bank. web sayfası: https://openknowledge.worldbank.org/entities/publication/d3f9d45e-115f-559b-b14f-28552410e90a, erişim tarihi:27.06.2024
  • European Commission, A Sustainable Bioeconomy for Europe: Strengthening the Connection Between Economy, Society and the Environment: Updated Bioeconomy Strategy, 2018, web sayfası: https://op.europa.eu/en/publication-detail/-/publication/edace3e3-e189-11e8-b690-01aa75ed71a1/, erişim tarihi: 27.06.2024
  • European Commission, A European Green Deal, 2019, web sayfası: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en, erişim tarihi: 27.06. 2024
  • European Commission, A New Circular Economy Action Plan, 2020, web sayfası: https://eur-lex.europa.eu/legalcontent/EN/TXT/HTML/?uri=CELEX:52020DC0098, erişim tarihi: 27.06.2024.
  • European Parliament, Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives, Bruxelles, web sayfası: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098, erişim tarihi: 27.06.2024.
  • United Nations, Sustainable Development Goals, 2015, web sayfası: https://www.undp.org/sustainable-development-goals, erişim tarihi: 27.06.2024.
  • Le Pera, A., Sellaro, M., Bencivenni, E., D’Amico, F., 2022, Environmental Sustainability of an Integrate Anaerobic Digestion-Composting Treatment of Food Waste: Analysis of an Italian Plant in the Circular Bioeconomy Strategy, Waste Manag., Vol. 139, 341-351.
  • Saravanan, A., Karishma, S., Senthil, K. P., Gayathri, Rangasamy, 2023, A Review on Regeneration of Biowaste into Bio-Products and Bioenergy: Life Cycle Assessment and Circular Economy, Fuel Vol. 338, 127221.
  • Crome, C., Graf-Drasch, V., Hawlitschek, F., Zinsbacher, D., 2023, Circular Economy is Key! Designing a Digital Artifact to Foster Smarter Household Biowaste Sorting, Journal of Cleaner Production, Vol. 423, 138613.
  • Bocken, N. M. P., Pauw, I., Bakker, C., Van der Grinten, B., 2016, Product Design and Business Model Strategies for a Circular Economy, J. Ind. Product. Eng., Vol., 33 (5), 308-320.
  • Ghisellini, P., Cialani, C., Ulgiati, S., 2016, A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems, J. Clean. Prod., Vol. 114, 11-32.
  • Zeiss, R., Ixmeier, A., Recker, J., Kranz, J., 2021, Mobilising Information Systems Scholarship for a Circular Economy: Review, Synthesis, and Directions for Future Research, Inf. Syst. J., Vol. 31 (1), 148-183.
  • Cucina, M., 2023, Integrating Anaerobic Digestion and Composting to Boost Energy and Metarial Recovery from Organic Wastes in the Circular Economy Framework in Europe: A Review, Bioresource Technology Reports, Vol. 24, 101642.
  • Geisendorf, S., Pietrulla, F., 2017, The Circular Economy and Circular Economic Concepts-A Literature Analysis and Redefinition, Thunderbird Int. Bus. Rev., Vol. 60(5), 771–782.
  • Awasthi, M. K., Sarsaiya, S., Wainaina, S., Rajendran, K., et al., 2019, A Critical Review of Organic Manure Biorefinery Models Toward Sustainable Circular Bioeconomy: Technological Challenges, Advancements, Innovations, and Future Perspectives, Renew. Sust. Energ. Rev., Vol. 111, 115-131.
  • Singh, R., Paritosh, K., Pareek, N., Vivekanand, V., 2022, Integrated System of Anaerobic Digestion and Pyrolysis for Valorization of Agricultural and Food Waste towards Circular Bioeconomy: Review, Bioresour. Technol., Vol.360, 127596.
  • Khandelwal, H., Thalla, A.K., Kumar, S., Kumar, R., 2019, Life Cycle Assessment of Municipal Solid Waste Management Options for India, Bioresource Technology, Vol. 288, 121515.
  • Rajaeifar, M.A., Tabatabaei, M., Ghanavati, H., Khoshnevisan, B., Rafiee, S., 2015, Comparative Life Cycle Assessment of Different Municipal Solid Waste Management Scenarios in Iran, Renew. Sustain. Energy Rev., Vol. 51, 886-898.
  • Edwards, J., Othman, M., Crossin, E., Burn, S., 2018, Life Cycle Assessment to Compare the Environmental Impact of Seven Contemporary Food Waste Management Systems, Bioresource Technology, Vol. 248, Part A, 156-173.
  • Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W.T., Suh, S., Weidema, B.P. and Pennington, D.W., 2004, Life cycle assessment. Part 1: Framework, goal and scope definition, inventory analysis and applications. Elsevier, Science Direct, Environment International 30(5), pp. 701-720.
  • Bhander, G., Christensen, T.H., Hauschild, M. Z., 2010, EASEWASTE-Life Cycle Modeling Capabilities for Waste Management Technologies, The International Journal of Life Cycle Assessment, Vol.15 (4), 403-416.
  • Demichelis, F., Tommasi, T. Deorsola, F. A., Marchisio, D., Mancini, G. and Fino, D., 2022, Life Cycle Assessment and Life Cycle Costing of Advanced Anaerobic Digestion of Organic Fraction Municipal Solid Waste, Chemosphere, Vol. 289, 133058.
  • Fernandez-Nava, Y., Río, Jd., Rodríguez-Iglesias J., Castrillon L., Maranon E., 2014, Life Cycle Assessment of Different Municipal Solid Waste Management Options: A Case Study of Asturias (Spain). Journal of Cleaner Production, Vol. 81, 178-189.
  • Yay, A. S. E., 2015, Application of Life Cycle Assessment (LCA) for Municipal Solid Waste Management: A Case Study of Sakarya, Journal of Cleaner Production, Vol. 94, 284-293.
  • Wang, J., Okopi, S. I., Ma, H., Wang, M., Chen, R., Tian, W., Xu, F., 2021, Life Cycle Assessment of the Integration of Anaerobic Digestion and Pyrolysis for Treatment of Municipal Solid Waste, Bioresource Technology, Vol. 338, 125486.
  • Feo, G.D., Ferrara, C., Iuliano, C., Grosso, A., 2016, LCA of the Collection, Transportation, Treatment and Disposal of Source Separated Municipal Waste: A Southern Italy Case Study, Sustainability, Vol. 8, 1084.
  • Petri, E., Heigl, E. M., Fasolini, A., Zeilerbauer, L., Giovannucci, M., Küçükağa, Y., Torri, C., Basile, F., Soavi F., 2024, Conversion of biodigestate into activated carbon for electrochemical application: Process performance and life cycle assessment, Carbon, Vol.226,119221.
  • Emery A., Davies A., Griffith A., Williams K., 2007, Environmental and Economic Modelling: A Case Study of Municipal Solid Waste Management Scenarios in Wales, Resources Conservation and Recycling, Vol. 49, 244-263.
  • Laurent, A. Bakas, I. Clavreul, J. Bernstad, A. Niero, Gentil E., Hauschild, M. Z. and Christensen, T. H., 2014, Review of LCA studies of solid waste management systems—Part I: Lessons learned and perspectives. Waste Manag, 34, 573-588.
  • Blengini, G.A., Fantoni, M., Busto, M., Genon, G. and Zanetti, C., 2012, Participatory Approach, Acceptability and Transparency of Waste Management LCAs: Case Studies of Torino and Cuneo, Waste Manag., Vol. 32, 1712-1721.
  • Pinto-Diaz, L., Gunkel-Grillon, P., Roth, E., 2018, Life Cycle Analysis for the Treatment of Organic Matter from Municipal Solid Waste: A Case Study of France, Conference Paper in WIT Transactions on Ecology and the Environment, Jun 2018, Naples, Italy.
  • Lu, H.R., Qu, X., Hanandeh, A.E., 2020, Towards a Better Environment-The Municipal Organic Waste Management in Brisbane: Environmental Life Cycle and Cost Perspective, Journal of Cleaner Production,Vol. 258, 120756.
  • Montejo, C., Tonini, D., Márquez, M. D. C., & Astrup, T. F., 2013, Mechanical–Biological Treatment: Performance and Potentials. An LCA of 8 MBT Plants Including Waste Characterization, Journal of Environmental Management, Vol.128, 661-673.
  • Richard, E. N., Hilonga, A., Machunda, R.L. and Njau, K.N., 2021, Life Cycle Analysis of Potential Municipal Solid Wastes Management Scenarios in Tanzania: The Case of Arusha City, Sustainable Environment Research, Vol. 31(1) 2-13.
  • Cherubini, F., Bargigli, S., Ulgiati, S., 2009, Life Cycle Assessment (LCA) of Waste Management Strategies: Landfilling, Sorting Plant and Incineration, Energy, Vol. 34, 2116-2123.
  • Nilsson-Djerf, J., McDougall, F., 2000, Social Factors in Sustainable Waste Management, Warmer Bull., Vol. 73, 18-20.
  • Morrissey, A. J., Browne, J., 2004, Waste Management Models and Their Application to Sustainable Waste Management, Waste Manage., Vol. 24, 297-308.
  • Lee, K. H., Oh, J., Chu, K. H., Kwon, S. H. and Yoo, S. S., 2017, Comparison and Evaluation of Large-Scale and On-Site Recycling Systems for Food Waste via Life Cycle Cost Analysis, Sustainability, Vol. 9, 2186.
  • Nguyen, D.D., Yeop, J.S., Choi, J., Kim, S., Chang, S.W., Jeon, B.H., Guo, W. and Ngo, H.H., 2017, A New Approach for Concurrently Improving Performance of South Korean Food Waste Valorization and Renewable Energy Recovery Via Dry Anaerobic Digestion Under Mesophilic and Thermophilic Conditions, Waste Manag., Vol. 66, 161-168.
  • Hogg D., 2002, Costs for municipal waste management in the EU, Eunomia Research and Consulting, European Commission, Brussels.
  • Haaren R., 2009, Large scale aerobic composting of source-separated organic wastes: a comparative study of environmental impacts, costs, and contextual effects. Foundation of Engineering and Applied Science, Earth and Environmental Engineering. Columbia University, New York.
  • Pandyaswargo, A.H., Gamaralalage, P.J.D., 2014, Financial Sustainability of Modern Composting: The Economically Optimal Scale for Municipal Waste Composting Plant in Developing Asia, Int. J. Recycl. Waste Agricult., Vol. 3(66), 1-14.
  • Ayodele, T.R., Ogunjuyigbe, A.S.O., Alao, M.A., 2018, Economic and Environmental Assessment of Electricity Generation Using Biogas from Organic Fraction of Municipal Solid Waste for The City of Ibadan, Nigeria Journal of Cleaner Production, Vol. 203, 718-735.
  • Babalola, M.A., 2020, A Benefit–Cost Analysis of Food and Biodegradable Waste Treatment Alternatives: The Case of Oita City, Japan, Sustainability, Vol. 12, 1916.
  • Stahel W.R., 2016, The Circular Economy, Nature, Vol. 531,435-438.
  • Zhang, A., Venkatesh, V., Liu, Y., Wan, M., Qu, T. and Huisingh, D., 2019. Barriers to Smart Waste Management for A Circular Economy in China, J. Clean. Prod., Vol. 240, 118198.
  • Salmenperä, H., Pitkänen K., Kautto, P., Saikku, L., 2021, Critical Factors for Enhancing The Circular Economy in Waste Management, J. Clean. Prod., Vol. 280, 124339.
  • European Commission. Europe 2020-A Strategy for Smart, Sustainable and Inclusive Growth; (COM no. 2020, 2010); Commission of European Communities: Brussels, Belgium, 2010.
  • European Commission. Commission of European Communities. Communication No. 398, 2014. Towards a Circular Economy: A Zero Waste Programme for Europe; COM no. 398; European Commission: Brussels, Belgium, 2014.
  • European Commission. Commission of European Communities. Communication No. 614, 2015. Closing the Loop-An EU Action Plan for the Circular Economy; COM no. 614; European Commission: Brussels, Belgium, 2015.
  • European Commission. Commission of European Communities. Communication No. 29, 2018. Monitoring Framework for the Circular Economy; COM no. 29; European Commission: Brussels, Belgium, 2018.
  • European Commission. Commission of European Communities. Communication No. 98, 2020. A New Circular Economy Action Plan for a Cleaner and More Competitive Europe; COM no. 98; European Commission: Brussels, Belgium, 2020.
  • 8. European Circular Economy Stakeholders Platform, Web Sayfası: Circular.economy.europa.eu/platform, erişim tarihi: 17.06.2024.
  • Ellen MacArthur Foundation, Growth within: A circular economy vision for a competitive Europe, 2015, web sayfası: www.ellenmacarthurfoundation.org/growth-within-a-circular-economy-vision-for-a-competitive-europe, erişim tarihi: 29.06.2024.
  • Nizami, A., Rehan, M., Waqas, M., Naqvi, M., Ouda, O., Shahzad K., Miandad R, Khan M.Z., Syamsiro M., Ismail I.M.I. and Pant D., 2017, Waste Biorefineries: Enabling Circular Economies in Developing Countries, Bioresour. Technol., Vol. 241, 1101-1117.
  • The Role of Waste-to-Energy in the Circular Economy; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, European Commission: Brussels, Belgium, 2017.
  • Fagerström, A., Seadi, A., Rasi, T., Briseid, S., 2018, The Role of Anaerobic Digestion and Biogas in the Circular Economy, IEA Bioenergy Task 37, Edited by: Jerry D. Murphy, MaREI Centre, University College Cork, Ireland.
  • Monlau,F.,Francavilla,M.,Sambusiti,C.,Antoniou,N.,Solhy, A., Libutti A., Zabaniotou A., Barakat A. and Monteleone M., 2016, Toward a Functional Integration of Anaerobic Digestion and Pyrolysis or a Sustainable Resource Management, Comparison Between Solid-Digestate and Its Derived Pyrochar as Soil Amendment, Appl. Energy., Vol.169, 652-662.
  • Ellen MacArthur Foundation, 2013, Towards the Circular Economy: Economic and Business Retionale for an Accelerated Transition, Web sayfası: https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-Foundation-Towards-the-Circular-Economy-vol.1.pdf, erişim tarihi: 27.06.2024.
  • Wellinger, A., Murphy, J.D., Baxter, D., 2013, The Biogas Handbook: Science, Production and Applications, Woodhead Publishing limited, New Delhi.
  • Cossu, R., 2016, Back to Earth Sites: From ‘‘Nasty and Unsightly” Landfilling to Final Sink and Geological Repository, Editorial, Waste Management, Vol. 55, 1-2.
  • Li, Y., Han, Y., Zhang, Y., Luo, W., Li, G., 2020, Anaerobic Digestion of Different Agricultural Wastes: a Techno-Economic assessment, Bioresour. Technol.,Vol. 315, 123836.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm
Bölüm Makaleler
Yazarlar

Süreyya Altın 0000-0002-6853-8873

Yayımlanma Tarihi 3 Ocak 2025
Gönderilme Tarihi 5 Haziran 2024
Kabul Tarihi 16 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Altın, S. (2025). Yaşam Döngüsü Analizi ve Döngüsel Ekonomi Yaklaşımları ile Sürdürülebilir Biyoatık Yönetimi. Ulusal Çevre Bilimleri Araştırma Dergisi, 7(2), 55-68.
AMA Altın S. Yaşam Döngüsü Analizi ve Döngüsel Ekonomi Yaklaşımları ile Sürdürülebilir Biyoatık Yönetimi. UCBAD. Ocak 2025;7(2):55-68.
Chicago Altın, Süreyya. “Yaşam Döngüsü Analizi Ve Döngüsel Ekonomi Yaklaşımları Ile Sürdürülebilir Biyoatık Yönetimi”. Ulusal Çevre Bilimleri Araştırma Dergisi 7, sy. 2 (Ocak 2025): 55-68.
EndNote Altın S (01 Ocak 2025) Yaşam Döngüsü Analizi ve Döngüsel Ekonomi Yaklaşımları ile Sürdürülebilir Biyoatık Yönetimi. Ulusal Çevre Bilimleri Araştırma Dergisi 7 2 55–68.
IEEE S. Altın, “Yaşam Döngüsü Analizi ve Döngüsel Ekonomi Yaklaşımları ile Sürdürülebilir Biyoatık Yönetimi”, UCBAD, c. 7, sy. 2, ss. 55–68, 2025.
ISNAD Altın, Süreyya. “Yaşam Döngüsü Analizi Ve Döngüsel Ekonomi Yaklaşımları Ile Sürdürülebilir Biyoatık Yönetimi”. Ulusal Çevre Bilimleri Araştırma Dergisi 7/2 (Ocak 2025), 55-68.
JAMA Altın S. Yaşam Döngüsü Analizi ve Döngüsel Ekonomi Yaklaşımları ile Sürdürülebilir Biyoatık Yönetimi. UCBAD. 2025;7:55–68.
MLA Altın, Süreyya. “Yaşam Döngüsü Analizi Ve Döngüsel Ekonomi Yaklaşımları Ile Sürdürülebilir Biyoatık Yönetimi”. Ulusal Çevre Bilimleri Araştırma Dergisi, c. 7, sy. 2, 2025, ss. 55-68.
Vancouver Altın S. Yaşam Döngüsü Analizi ve Döngüsel Ekonomi Yaklaşımları ile Sürdürülebilir Biyoatık Yönetimi. UCBAD. 2025;7(2):55-68.
 ❤ UCBAD