Araştırma Makalesi
BibTex RIS Kaynak Göster

Predicting Financial Distress in The Textile Industry: A Comparative Analysis of Meta Models and Single Classifiers

Yıl 2025, Cilt: 9 Sayı: 1, 20 - 36
https://doi.org/10.29216/ueip.1599431

Öz

This study evaluates the effectiveness of meta-models in predicting financial distress in the Turkish textile industry. Using economic data from 2013 to 2023, the research applies a meta-model that integrates Lasso, Ridge, Random Forest, Gradient Boosting Machines (GBM), and Support Vector Machines (SVM) as base models, with XGBoost serving as the meta learner. The results show that the meta-model outperforms a standalone XGBoost classifier, especially in minimizing false negatives, which is critical for the early detection of financial distress. The meta-model achieved superior recall and F1 scores, offering a more reliable tool for predicting financial instability in volatile sectors like textiles. However, the study also acknowledges limitations such as model selection bias, the complexity of hyperparameter tuning, and reduced interpretability due to the ensemble nature of the approach. The findings highlight the potential of meta-modeling for industry-specific financial risk prediction while suggesting future improvements in model transparency and generalizability.

Etik Beyan

Research and Publication Ethics Statement: All rules specified in the Higher Education Institutions Scientific Research and Publication Ethics Directive have been complied with. None of the actions specified under the heading "Actions Contrary to Scientific Research and Publication Ethics" of the Directive have been carried out. During the writing process of this study, citations were made in accordance with ethical rules and a bibliography was created. The work was subjected to plagiarism check. Ethics Committee Permission: The study does not require ethics committee permission.

Destekleyen Kurum

Statement of Support and Acknowledgments: No external support was received in the preparation of this research.

Kaynakça

  • Abdullayev, I., Osadchy, E., Shcherbakova, N., & Kosorukova, I. (2025). An innovative approach to financial distress prediction using relative weighted neutrosophic valued distances. International Journal of Neutrosophic Science, 370–381. https://doi.org/10.54216/IJNS.250133
  • Agung Saputra, J. (2019). The effect of liquidity ratio, leverage ratio, and activity ratio in predicting financial distress. Management and Economic Journal, 3(5), 581-592.
  • Ahuja, B. R., & Singhal, N. (2014). Assessing the financial soundness of companies with special reference to the Indian textile sector: An application of the Altman Z score model. Indian Journal of Finance, 8(4), 38–48. https://doi.org/10.17010/ijf/2014/v8i4/71922
  • Akkaya, G. C. (2008). Sermaye yapısı, varlık verimliliği ve karlılık: imkb'de faaliyet gösteren deri-tekstil sektörü işletmeleri üzerine bir uygulama. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (30), 1-13.
  • Altaş, D., & Giray, S. (2005). Mali başarısızlığın çok değişkenli istatistiksel yöntemlerle belirlenmesi: Tekstil sektörü örneği. Sosyal Bilimler Dergisi, (2), 13-28.
  • Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2978933
  • Apasya, T., Machmuddah, Z., & Sumaryati, A. (2023). The effect of financial ratios on financial distress conditions is moderated by profitability ratios. Jurnal Penelitian Ekonomi dan Bisnis, 8(2), 67-79. https://doi.org/10.33633/jpeb.v8i2.7961
  • Arifuddin, A., Erwin, H., Ika Sari, M., & Annisa Yulianti, F. (2023). How liquidity, profitability, and leverage ratios influence financial distress: A study on Indonesian mining firms. Jurnal Perspektif Pembiayaan dan Pembangunan Daerah, 11(3), 243-252. https://doi.org/10.22437/ppd.v11i3.27470
  • Arini, I. N. (2021). Analisis akurasi model-model prediksi financial distress. Jurnal Ilmu Manajemen, 9(3), 1196-1204. https://doi.org/10.26740/jim.v9n3.p1196-1204
  • Arini, S. A., Samrotun, Y. C., & Masitoh, E. (2021). Determinant of financial ratio analysis to financial distress. Jambura Science of Management, 3(1), 26-35. https://doi.org/10.37479/jsm.v3i1.6962
  • Ashraf, S., Félix, E. G. S., & Serrasqueiro, Z. (2019). Do traditional financial distress prediction models predict the early warning signs of financial distress? Journal of Risk and Financial Management, 12(2), 55. https://doi.org/10.3390/jrfm12020055
  • Atika, Darminto, & Siti Handayani, R. (2013). Pengaruh Beberapa Rasio Keuangan terhadap Prediksi Kondisi Financial Distress. Jurnal Administrasi Bisnis, 1(2), 1-11.
  • Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. The Journal of Finance, 63(6), 2899–2939. https://doi.org/10.1111/j.1540-6261.2008.01416.x
  • Cao, Y., Guang-yu, W., & Wang, F. (2011). Predicting financial distress of Chinese listed companies using rough set theory and support vector machine. Asia-Pacific Journal of Operational Research, 28(01), 95–109. https://doi.org/10.1142/s0217595911003077
  • Chaves, R. M., Rossi, A. L. D., & Garcia, L. P. F. (2023). A financial distress prediction using a non-stationary dataset. Anais do XX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2023), 300-314. https://doi.org/10.5753/eniac.2023.234013
  • Chaves, R., Debiaso, A. L., & García, L. E. (2023). Financial distress prediction in an imbalanced data stream environment. Lecture Notes in Computer Science, 168–179. https://doi.org/10.1007/978-3-031-40725-3_15
  • Chen, J., & Jiang, Y. (2017). Optimal margin distribution ridge regression. Journal of Computer Research and Development, 54(8), 1744–1750. https://doi.org/10.7544/issn1000-1239.2017.20170349
  • Chen, L. (2011). Social post-evaluation of World Bank projects in Yanhe Basin based on ridge regression and support vector machines. In 2011 3rd International Workshop on Intelligent Systems and Applications (ISA 2011). IEEE. https://doi.org/10.1109/ISA.2011.5873358
  • Chen, X., Wu, C., Zhang, Z., & Liu, J. (2024). Multi-class financial distress prediction based on stacking ensemble method. International Journal of Finance & Economics. https://doi.org/10.1002/ijfe.3020
  • Eduard, A., Binsar, N., & Adeline, N. (2023). Ratio analysis to financial distress with profitability as a moderation variable. Jurnal Reviu Akuntansi dan Keuangan, 13(2), 412-440. https://doi.org/10.22219/jrak.v13i2.24506
  • El-Bannany, M., Sreedharan, M., & Khedr, A. M. (2020). A robust deep learning model for financial distress prediction. International Journal of Advanced Computer Science and Applications, 11(2). https://doi.org/10.14569/IJACSA.2020.0110222
  • Elhoseny, M., Metawa, N., Sztanó, G., & El-Hasnony, I. M. (2022). Deep learning-based model for financial distress prediction. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04766-5
  • Elmi Dini, T., & Umi, M. (2023). Financial distress perusahaan sektor pariwisata: Pengaruh profitabilitas, likuiditas dan leverage. Prosiding Seminar Nasional Forum Manajemen Indonesia, 1, 257-73. https://doi.org/10.47747/snfmi.v1i.1506.
  • Engin, U., & Durer, S. (2023). Financial Distress Prediction from Time Series Data Using Xgboost: Bist100 of Borsa Istanbul. Doğuş Üniversitesi Dergisi, 24(2), 589-604. https://doi.org/10.31671/doujournal.1238432
  • Ezin, Y. (2022). Teksti̇l sektörünün oran anali̇zi̇ ve topsi̇s yöntemi̇ i̇le değerlendi̇ri̇lmesi̇. Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 13(25), 213-243. https://doi.org/10.36543/kauiibfd.2022.010
  • Fatimah, F., Akhmad, T., & Aryo, P. (2019). The influence of liquidity, leverage and profitability ratio on financial distress. Owner, 3(1), 103. https://doi.org/10.33395/owner.v3i1.102
  • Goetz, S. (2020). Is financial distress value relevant? – Implications for multiple-based valuation. Journal of Business Valuation and Economic Loss Analysis, 15(1), 20190015. https://doi.org/10.1515/jbvela-2019-0015
  • Ha, H. H., Dang, N. H., & Tran, M. D. (2023). Financial distress forecasting with a machine learning approach. Corporate Governance and Organizational Behavior Review, 7(3), 90-104. https://doi.org/10.22495/cgobrv7i3p8
  • Hadi, M. F., Liang, D.-R., Priyambodo, T. K., & Sn, A. (2022). Financial distress prediction with stacking ensemble learning. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 16(3), 281. https://doi.org/10.22146/ijccs.76575
  • Heymans, A., & Brewer, W. (2023). Measuring the relationship between intraday returns, volatility spillovers, and market beta during financial distress. In P. W. Buys & M. Oberholzer (Ed.), Business Research, 77-98. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9479-1_5
  • Islam, M. N., Li, S., & Wheatley, C. M. (2023). Accounting comparability and financial distress. Review of Accounting and Finance, 22(3), 353–373. https://doi.org/10.1108/raf-07-2022-0207
  • Jorge Ceron, M. (2012). Going distress on the WACC. Social Science Research Network. https://doi.org/10.2139/SSRN.2464431
  • Kan, H. J., Kharrazi, H., Chang, Y., Bodycombe, D., Lemke, K., & Weiner, J. P. (2019). Exploring the use of machine learning for risk adjustment: A comparison of standard and penalized linear regression models in predicting health care costs in older adults. PLOS ONE, 14(3), e0213258. https://doi.org/10.1371/journal.pone.0213258
  • Khoja, L., Chipulu, M., & Jayasekera, R. (2019). Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data. International Review of Financial Analysis, 66, 101379. https://doi.org/10.1016/j.irfa.2019.101379
  • Kong, L., Zhu, Z., Xu, L., Wu, T., & Xu, X. (2023). Neural network-based financial distress prediction for listed companies in china. Proceedings of the 2023 4th International Conference on Big Data Economy and Information Management, 199-203. https://doi.org/10.1145/3659211.3659245
  • Korteweg, A. G. (2007). The costs of financial distress across industries. Social Science Research Network. https://doi.org/10.2139/SSRN.945425
  • Lejeune, E. (2020). Mechanical MNIST: A benchmark dataset for mechanical metamodels. Extreme Mechanics Letters, 36. https://doi.org/10.1016/j.eml.2020.100659
  • Lestari, F. (2023). Prediksi finansial distress pada salah satu bank konvensional menggunakan machine learning. Indonesian Journal of Applied Mathematics, 3(1), 21. https://doi.org/10.35472/indojam.v3i1.1284
  • Liu, J., Wu, C., & Li, Y. (2019). Improving financial distress prediction using financial network-based information and GA-based gradient boosting method. Computational Economics, 53(2), 851–872. https://doi.org/10.1007/S10614-017-9768-3
  • Lumbantobing, R. (2020). The effect of financial ratios on the possibility of financial distress in selected manufacturing companies which listed in indonesia stock exchange. Proceedings of the 6th Annual International Conference on Management Research (AICMaR 2019). Jakarta, Indonesia. https://doi.org/10.2991/aebmr.k.200331.014
  • Maheswari, K., Packia Amutha Priya, P., Ramkumar, S., & Arun, M. (2020). Missing data handling by mean imputation method and statistical analysis of classification algorithm. EAI/Springer Innovations in Communication and Computing, 137–149. https://doi.org/10.1007/978-3-030-19562-5_14
  • Mavengere, K., & Gumede, P. (2024). Financial distress prediction competence of the Altman Z score and Zmijewski model: Evidence from selected Zimbabwe stock exchange firms. Journal of Business, Economics and Finance, 11(1), https://doi.org/10.17261/pressacademia.2024.1892
  • Mufidah, K., & Handayani, A. (2024). Prediksi financial distress pada sektor perbankan dengan menggunakan metode Altman Z-Score, Grover, Springate dan Zmijewski. Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI), 5(6), 540-553. https://doi.org/10.38035/jemsi.v5i6.2479
  • Mukhametzyanov, I. Z. (2023). MS-transformation of Z-score. International Series in Operations Research and Management Science, 348, 151–166. https://doi.org/10.1007/978-3-031-33837-3_8
  • Nurtati, & Yuni, S. (2023). The effect of financial ratio on financial distress (Empirical study on sub industry of hotels, resorts and cruise lines listed on the Indonesia Stock Exchange). Galore International Journal of Applied Sciences and Humanities, 6(4), 30-44. https://doi.org/10.52403/gijash.20221006
  • Prapanca, D., & Kumalasari, H. M. (2023). Strategic formulations and financial distress: İnsights from sales growth and profitability ratios. JBMP (Jurnal Bisnis, Manajemen dan Perbankan), 9(2), 210-225. https://doi.org/10.21070/jbmp.v9i2.1814
  • Pravin, P., & Dhabaliya, D. A. (2023). Analysis of financial distress using Altman’s Z-score model in selected Indian pharmaceutical companies. Journal of Advanced Research in Economics and Administrative Sciences. 4(4), 1-13. https://doi.org/10.47631/jareas.v4i4.626
  • Putri, R. A., & Hendayana, Y. (2022). Pengaruh rasio profitabilitas, rasio solvabilitas, dan rasio likuiditas terhadap financial distress. Fair Value: Jurnal Ilmiah Akuntansi dan Keuangan, 4(12), 5646-5653. https://doi.org/10.32670/fairvalue.v4i12.2091
  • Ramzan, S. (2023). Comparison of financial distress prediction models using financial variables. 2023 International Conference on Electrical, Computer and Energy Technologies, 1-7. https://doi.org/10.1109/ICECET58911.2023.10389294
  • Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J., Chica-Olmo, M., & Ribeiro, L. (2014). Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Science of the Total Environment, 476–477, 189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001
  • Santhanakrishnan, K., & Senthooran, V. (2022). A parallel distributed cluster computing model for Z-score computation in respect of Sri Lankan university admissions. ICARC 2022 - 2nd International Conference on Advanced Research in Computing, 344–348. https://doi.org/10.1109/ICARC54489.2022.9754093
  • Say, S. (2024). Determining Financial Distress with The Help Of The Altman Z-Score Model. Toplum Ekonomi Ve Yönetim Dergisi, 5(2), 327-341. https://doi.org/10.58702/teyd.1416150
  • Sehgal, S., Mishra, R. K., Deisting, F., & Vashisht, R. (2021). On the determinants and prediction of corporate financial distress in India. Managerial Finance, 47(10), 1428–1447. https://doi.org/10.1108/MF-06-2020-0332
  • Shahoud, S., Winter, M., Khalloof, H., Duepmeier, C., & Hagenmeyer, V. (2021). An extended meta learning approach for automating model selection in big data environments using microservice and container virtualizationz technologies. Internet of Things (Netherlands), 16. https://doi.org/10.1016/j.iot.2021.100432
  • Sharma, B., Srikanth P, & Jeevananda, S. (2023). Financial distress and value premium using altman revised z-score model. Vision: The Journal of Business Perspective, 0(0). https://doi.org/10.1177/09722629231198604
  • Silviyani, Y. A., Risthi, A., & Afandi, A. (2024). Prediksi financial distress model almant z-score, kinerja keuangan dan pengaruhnya terhadap nilai perusahaan. AKADEMIK: Jurnal Mahasiswa Ekonomi & Bisnis, 4(2), 692-704. https://doi.org/10.37481/jmeb.v4i2.789
  • Sprangers, O., Schelter, S., & De Rijke, M. (2021). Probabilistic gradient boosting machines for large-scale probabilistic regression. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1510–1520). ACM. https://doi.org/10.1145/3447548.3467278
  • Sun, J., Liu, X., Ai, W., & Tian, Q. (2021). Dynamic financial distress prediction based on class-imbalanced data batches. International Journal of Financial Engineering, 08, 2150026. https://doi.org/10.1142/S2424786321500262
  • Suryani, S., & Desy, M. (2022). Memprediksi financial distress melalui faktor internal pada perusahaan jasa sub sektor property dan real estate. Jurnal Ilmiah Akuntansi Kesatuan. https://doi.org/10.37641/jiakes.v10i3.1441
  • T.C. Ticaret Bakanlığı. (t.y.). Sektörler. Kolay İhracat. Retrieved January 11, 2025, from https://www.kolayihracat.gov.tr/sektorler/
  • Tang, X., Li, S., Tan, M., & Shi, W. (2020). Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods. Journal of Forecasting, 39(5), 769–787. https://doi.org/10.1002/FOR.2661
  • Tran, K. L., Le, H. A., Nguyen, T. H., & Nguyen, D. T. (2022). Explainable machine learning for financial distress prediction: Evidence from vietnam. Data, 7(11), 160. https://doi.org/10.3390/data7110160
  • Vanschoren, J. (2019). Meta-Learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds) Automated Machine Learning. The Springer Series on Challenges in Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-05318-5_2
  • Vebrizha, N., Nilwan, A., & Riswan. (2024). The impact of financial ratios on financial distress in the transportation sector. Asian Journal of Economics and Business Management, 3(1), 421-428. https://doi.org/10.53402/ajebm.v3i1.391
  • Wang, G., Chen, G., & Chu, Y. (2018). A new random subspace method incorporating sentiment and textual information for financial distress prediction. Electronic Commerce Research and Applications, 29, 30–49.
  • Wang, S., & Chi, G. (2024). Cost-sensitive stacking ensemble learning for company financial distress prediction. Expert Systems with Applications, 255. https://doi.org/10.1016/j.eswa.2024.124525
  • Widiastuti, W., & Ali Ikhsan, N. (2022). Pengaruh rasio likuiditas, profitabilitas, dan leverage terhadap financial distress. Eqien - Jurnal Ekonomi dan Bisnis, 11(04). https://doi.org/10.34308/eqien.v11i04.1287
  • Wisnu, F., & Astuti, D. P. (2023). Financial distress: Profitability ratios and liquidity ratios, with financial statement fraud as moderating. Economic Education Analysis Journal, 12(2), 15-26. https://doi.org/10.15294/eeaj.v12i2.67570
  • Xia, Y., Cheng, K., Cheng, Z., Rao, Y., & Pu, J. (2021). GBMVis: Visual analytics for interpreting gradient boosting machine. In Lecture Notes in Computer Science (Vol. 12983, pp. 63–72). Springer. https://doi.org/10.1007/978-3-030-88207-5_7
  • Ye, H.-J., Li, X.-C., & Zhan, D.-C. (2021). Task cooperation for semi-supervised few-shot learning. 35th AAAI Conference on Artificial Intelligence, AAAI 2021, 12A, 10682–10690.
  • Yu, L., Li, M., & Liu, X. (2024). A two-stage case-based reasoning driven classification paradigm for financial distress prediction with missing and imbalanced data. Expert Systems with Applications, 249, 123745. https://doi.org/10.1016/j.eswa.2024.123745
  • Zeng, S., Li, Y., & Yang, W. (2020). A financial distress prediction model based on sparse algorithm and support vector machine. Mathematical Problems in Engineering, 2020, 1–11. https://doi.org/10.1155/2020/5625271
  • Zhang, Z., Wu, C., Qu, S., & Chen, X. (2022). An explainable artificial intelligence approach for financial distress prediction. Information Processing and Management, 59(4), 102988. https://doi.org/10.1016/j.ipm.2022.102988
  • Zhao, S., Xu, K., Wang, Z., Liang, C., Lu, W., & Chen, B. (2022). Financial distress prediction by combining sentiment tone features. Economic Modelling, 106, 105709.
  • Zhong, J., & Wang, Z. (2022). Artificial intelligence techniques for financial distress prediction. AIMS Mathematics, 7(12), 20891–20908. https://doi.org/10.3934/math.20221145

Tekstil Endüstrisinde Finansal Sıkıntının Tahmini: Meta Modellerin ve Tek Sınıflandırıcıların Karşılaştırmalı Analizi

Yıl 2025, Cilt: 9 Sayı: 1, 20 - 36
https://doi.org/10.29216/ueip.1599431

Öz

Bu çalışma, Türk tekstil sektöründeki finansal sıkıntıları tahmin etmede meta modellerin etkinliğini değerlendirmektedir. Araştırma, 2013'ten 2023'e kadar olan finansal verileri kullanarak Kement, Ridge, Rastgele Orman, Gradyan Arttırma Makineleri (GBM) ve Destek Vektör Makinelerini (DVM) temel modeller olarak entegre eden ve XGBoost'un meta öğrenici olarak hizmet ettiği bir meta model uygulamaktadır. Sonuçlar, meta modelin, özellikle finansal sıkıntının erken tespiti için kritik olan yanlış negatifleri en aza indirmede bağımsız bir XGBoost sınıflandırıcıdan daha iyi performans gösterdiğini göstermektedir. Meta model, tekstil gibi değişken sektörlerde finansal istikrarsızlığı tahmin etmek için daha güvenilir bir araç sunarak üstün hatırlama ve F1 puanları elde etmiştir. Bununla birlikte, çalışma aynı zamanda model seçimi yanlılığı, hiperparametre ayarının karmaşıklığı ve yaklaşımın topluluk doğası nedeniyle yorumlanabilirliğin azalması gibi sınırlamaları da kabul etmektedir. Bulgular, meta modellemenin sektöre özgü finansal risk tahmini için potansiyelini vurgularken, model şeffaflığı ve genelleştirilebilirliğinde gelecekte yapılabilecek iyileştirmelere dair önerilerde bulunmaktadır.

Kaynakça

  • Abdullayev, I., Osadchy, E., Shcherbakova, N., & Kosorukova, I. (2025). An innovative approach to financial distress prediction using relative weighted neutrosophic valued distances. International Journal of Neutrosophic Science, 370–381. https://doi.org/10.54216/IJNS.250133
  • Agung Saputra, J. (2019). The effect of liquidity ratio, leverage ratio, and activity ratio in predicting financial distress. Management and Economic Journal, 3(5), 581-592.
  • Ahuja, B. R., & Singhal, N. (2014). Assessing the financial soundness of companies with special reference to the Indian textile sector: An application of the Altman Z score model. Indian Journal of Finance, 8(4), 38–48. https://doi.org/10.17010/ijf/2014/v8i4/71922
  • Akkaya, G. C. (2008). Sermaye yapısı, varlık verimliliği ve karlılık: imkb'de faaliyet gösteren deri-tekstil sektörü işletmeleri üzerine bir uygulama. Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, (30), 1-13.
  • Altaş, D., & Giray, S. (2005). Mali başarısızlığın çok değişkenli istatistiksel yöntemlerle belirlenmesi: Tekstil sektörü örneği. Sosyal Bilimler Dergisi, (2), 13-28.
  • Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589–609. https://doi.org/10.2307/2978933
  • Apasya, T., Machmuddah, Z., & Sumaryati, A. (2023). The effect of financial ratios on financial distress conditions is moderated by profitability ratios. Jurnal Penelitian Ekonomi dan Bisnis, 8(2), 67-79. https://doi.org/10.33633/jpeb.v8i2.7961
  • Arifuddin, A., Erwin, H., Ika Sari, M., & Annisa Yulianti, F. (2023). How liquidity, profitability, and leverage ratios influence financial distress: A study on Indonesian mining firms. Jurnal Perspektif Pembiayaan dan Pembangunan Daerah, 11(3), 243-252. https://doi.org/10.22437/ppd.v11i3.27470
  • Arini, I. N. (2021). Analisis akurasi model-model prediksi financial distress. Jurnal Ilmu Manajemen, 9(3), 1196-1204. https://doi.org/10.26740/jim.v9n3.p1196-1204
  • Arini, S. A., Samrotun, Y. C., & Masitoh, E. (2021). Determinant of financial ratio analysis to financial distress. Jambura Science of Management, 3(1), 26-35. https://doi.org/10.37479/jsm.v3i1.6962
  • Ashraf, S., Félix, E. G. S., & Serrasqueiro, Z. (2019). Do traditional financial distress prediction models predict the early warning signs of financial distress? Journal of Risk and Financial Management, 12(2), 55. https://doi.org/10.3390/jrfm12020055
  • Atika, Darminto, & Siti Handayani, R. (2013). Pengaruh Beberapa Rasio Keuangan terhadap Prediksi Kondisi Financial Distress. Jurnal Administrasi Bisnis, 1(2), 1-11.
  • Campbell, J. Y., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. The Journal of Finance, 63(6), 2899–2939. https://doi.org/10.1111/j.1540-6261.2008.01416.x
  • Cao, Y., Guang-yu, W., & Wang, F. (2011). Predicting financial distress of Chinese listed companies using rough set theory and support vector machine. Asia-Pacific Journal of Operational Research, 28(01), 95–109. https://doi.org/10.1142/s0217595911003077
  • Chaves, R. M., Rossi, A. L. D., & Garcia, L. P. F. (2023). A financial distress prediction using a non-stationary dataset. Anais do XX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2023), 300-314. https://doi.org/10.5753/eniac.2023.234013
  • Chaves, R., Debiaso, A. L., & García, L. E. (2023). Financial distress prediction in an imbalanced data stream environment. Lecture Notes in Computer Science, 168–179. https://doi.org/10.1007/978-3-031-40725-3_15
  • Chen, J., & Jiang, Y. (2017). Optimal margin distribution ridge regression. Journal of Computer Research and Development, 54(8), 1744–1750. https://doi.org/10.7544/issn1000-1239.2017.20170349
  • Chen, L. (2011). Social post-evaluation of World Bank projects in Yanhe Basin based on ridge regression and support vector machines. In 2011 3rd International Workshop on Intelligent Systems and Applications (ISA 2011). IEEE. https://doi.org/10.1109/ISA.2011.5873358
  • Chen, X., Wu, C., Zhang, Z., & Liu, J. (2024). Multi-class financial distress prediction based on stacking ensemble method. International Journal of Finance & Economics. https://doi.org/10.1002/ijfe.3020
  • Eduard, A., Binsar, N., & Adeline, N. (2023). Ratio analysis to financial distress with profitability as a moderation variable. Jurnal Reviu Akuntansi dan Keuangan, 13(2), 412-440. https://doi.org/10.22219/jrak.v13i2.24506
  • El-Bannany, M., Sreedharan, M., & Khedr, A. M. (2020). A robust deep learning model for financial distress prediction. International Journal of Advanced Computer Science and Applications, 11(2). https://doi.org/10.14569/IJACSA.2020.0110222
  • Elhoseny, M., Metawa, N., Sztanó, G., & El-Hasnony, I. M. (2022). Deep learning-based model for financial distress prediction. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04766-5
  • Elmi Dini, T., & Umi, M. (2023). Financial distress perusahaan sektor pariwisata: Pengaruh profitabilitas, likuiditas dan leverage. Prosiding Seminar Nasional Forum Manajemen Indonesia, 1, 257-73. https://doi.org/10.47747/snfmi.v1i.1506.
  • Engin, U., & Durer, S. (2023). Financial Distress Prediction from Time Series Data Using Xgboost: Bist100 of Borsa Istanbul. Doğuş Üniversitesi Dergisi, 24(2), 589-604. https://doi.org/10.31671/doujournal.1238432
  • Ezin, Y. (2022). Teksti̇l sektörünün oran anali̇zi̇ ve topsi̇s yöntemi̇ i̇le değerlendi̇ri̇lmesi̇. Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 13(25), 213-243. https://doi.org/10.36543/kauiibfd.2022.010
  • Fatimah, F., Akhmad, T., & Aryo, P. (2019). The influence of liquidity, leverage and profitability ratio on financial distress. Owner, 3(1), 103. https://doi.org/10.33395/owner.v3i1.102
  • Goetz, S. (2020). Is financial distress value relevant? – Implications for multiple-based valuation. Journal of Business Valuation and Economic Loss Analysis, 15(1), 20190015. https://doi.org/10.1515/jbvela-2019-0015
  • Ha, H. H., Dang, N. H., & Tran, M. D. (2023). Financial distress forecasting with a machine learning approach. Corporate Governance and Organizational Behavior Review, 7(3), 90-104. https://doi.org/10.22495/cgobrv7i3p8
  • Hadi, M. F., Liang, D.-R., Priyambodo, T. K., & Sn, A. (2022). Financial distress prediction with stacking ensemble learning. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 16(3), 281. https://doi.org/10.22146/ijccs.76575
  • Heymans, A., & Brewer, W. (2023). Measuring the relationship between intraday returns, volatility spillovers, and market beta during financial distress. In P. W. Buys & M. Oberholzer (Ed.), Business Research, 77-98. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-9479-1_5
  • Islam, M. N., Li, S., & Wheatley, C. M. (2023). Accounting comparability and financial distress. Review of Accounting and Finance, 22(3), 353–373. https://doi.org/10.1108/raf-07-2022-0207
  • Jorge Ceron, M. (2012). Going distress on the WACC. Social Science Research Network. https://doi.org/10.2139/SSRN.2464431
  • Kan, H. J., Kharrazi, H., Chang, Y., Bodycombe, D., Lemke, K., & Weiner, J. P. (2019). Exploring the use of machine learning for risk adjustment: A comparison of standard and penalized linear regression models in predicting health care costs in older adults. PLOS ONE, 14(3), e0213258. https://doi.org/10.1371/journal.pone.0213258
  • Khoja, L., Chipulu, M., & Jayasekera, R. (2019). Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data. International Review of Financial Analysis, 66, 101379. https://doi.org/10.1016/j.irfa.2019.101379
  • Kong, L., Zhu, Z., Xu, L., Wu, T., & Xu, X. (2023). Neural network-based financial distress prediction for listed companies in china. Proceedings of the 2023 4th International Conference on Big Data Economy and Information Management, 199-203. https://doi.org/10.1145/3659211.3659245
  • Korteweg, A. G. (2007). The costs of financial distress across industries. Social Science Research Network. https://doi.org/10.2139/SSRN.945425
  • Lejeune, E. (2020). Mechanical MNIST: A benchmark dataset for mechanical metamodels. Extreme Mechanics Letters, 36. https://doi.org/10.1016/j.eml.2020.100659
  • Lestari, F. (2023). Prediksi finansial distress pada salah satu bank konvensional menggunakan machine learning. Indonesian Journal of Applied Mathematics, 3(1), 21. https://doi.org/10.35472/indojam.v3i1.1284
  • Liu, J., Wu, C., & Li, Y. (2019). Improving financial distress prediction using financial network-based information and GA-based gradient boosting method. Computational Economics, 53(2), 851–872. https://doi.org/10.1007/S10614-017-9768-3
  • Lumbantobing, R. (2020). The effect of financial ratios on the possibility of financial distress in selected manufacturing companies which listed in indonesia stock exchange. Proceedings of the 6th Annual International Conference on Management Research (AICMaR 2019). Jakarta, Indonesia. https://doi.org/10.2991/aebmr.k.200331.014
  • Maheswari, K., Packia Amutha Priya, P., Ramkumar, S., & Arun, M. (2020). Missing data handling by mean imputation method and statistical analysis of classification algorithm. EAI/Springer Innovations in Communication and Computing, 137–149. https://doi.org/10.1007/978-3-030-19562-5_14
  • Mavengere, K., & Gumede, P. (2024). Financial distress prediction competence of the Altman Z score and Zmijewski model: Evidence from selected Zimbabwe stock exchange firms. Journal of Business, Economics and Finance, 11(1), https://doi.org/10.17261/pressacademia.2024.1892
  • Mufidah, K., & Handayani, A. (2024). Prediksi financial distress pada sektor perbankan dengan menggunakan metode Altman Z-Score, Grover, Springate dan Zmijewski. Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI), 5(6), 540-553. https://doi.org/10.38035/jemsi.v5i6.2479
  • Mukhametzyanov, I. Z. (2023). MS-transformation of Z-score. International Series in Operations Research and Management Science, 348, 151–166. https://doi.org/10.1007/978-3-031-33837-3_8
  • Nurtati, & Yuni, S. (2023). The effect of financial ratio on financial distress (Empirical study on sub industry of hotels, resorts and cruise lines listed on the Indonesia Stock Exchange). Galore International Journal of Applied Sciences and Humanities, 6(4), 30-44. https://doi.org/10.52403/gijash.20221006
  • Prapanca, D., & Kumalasari, H. M. (2023). Strategic formulations and financial distress: İnsights from sales growth and profitability ratios. JBMP (Jurnal Bisnis, Manajemen dan Perbankan), 9(2), 210-225. https://doi.org/10.21070/jbmp.v9i2.1814
  • Pravin, P., & Dhabaliya, D. A. (2023). Analysis of financial distress using Altman’s Z-score model in selected Indian pharmaceutical companies. Journal of Advanced Research in Economics and Administrative Sciences. 4(4), 1-13. https://doi.org/10.47631/jareas.v4i4.626
  • Putri, R. A., & Hendayana, Y. (2022). Pengaruh rasio profitabilitas, rasio solvabilitas, dan rasio likuiditas terhadap financial distress. Fair Value: Jurnal Ilmiah Akuntansi dan Keuangan, 4(12), 5646-5653. https://doi.org/10.32670/fairvalue.v4i12.2091
  • Ramzan, S. (2023). Comparison of financial distress prediction models using financial variables. 2023 International Conference on Electrical, Computer and Energy Technologies, 1-7. https://doi.org/10.1109/ICECET58911.2023.10389294
  • Rodriguez-Galiano, V., Mendes, M. P., Garcia-Soldado, M. J., Chica-Olmo, M., & Ribeiro, L. (2014). Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Science of the Total Environment, 476–477, 189–206. https://doi.org/10.1016/j.scitotenv.2014.01.001
  • Santhanakrishnan, K., & Senthooran, V. (2022). A parallel distributed cluster computing model for Z-score computation in respect of Sri Lankan university admissions. ICARC 2022 - 2nd International Conference on Advanced Research in Computing, 344–348. https://doi.org/10.1109/ICARC54489.2022.9754093
  • Say, S. (2024). Determining Financial Distress with The Help Of The Altman Z-Score Model. Toplum Ekonomi Ve Yönetim Dergisi, 5(2), 327-341. https://doi.org/10.58702/teyd.1416150
  • Sehgal, S., Mishra, R. K., Deisting, F., & Vashisht, R. (2021). On the determinants and prediction of corporate financial distress in India. Managerial Finance, 47(10), 1428–1447. https://doi.org/10.1108/MF-06-2020-0332
  • Shahoud, S., Winter, M., Khalloof, H., Duepmeier, C., & Hagenmeyer, V. (2021). An extended meta learning approach for automating model selection in big data environments using microservice and container virtualizationz technologies. Internet of Things (Netherlands), 16. https://doi.org/10.1016/j.iot.2021.100432
  • Sharma, B., Srikanth P, & Jeevananda, S. (2023). Financial distress and value premium using altman revised z-score model. Vision: The Journal of Business Perspective, 0(0). https://doi.org/10.1177/09722629231198604
  • Silviyani, Y. A., Risthi, A., & Afandi, A. (2024). Prediksi financial distress model almant z-score, kinerja keuangan dan pengaruhnya terhadap nilai perusahaan. AKADEMIK: Jurnal Mahasiswa Ekonomi & Bisnis, 4(2), 692-704. https://doi.org/10.37481/jmeb.v4i2.789
  • Sprangers, O., Schelter, S., & De Rijke, M. (2021). Probabilistic gradient boosting machines for large-scale probabilistic regression. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1510–1520). ACM. https://doi.org/10.1145/3447548.3467278
  • Sun, J., Liu, X., Ai, W., & Tian, Q. (2021). Dynamic financial distress prediction based on class-imbalanced data batches. International Journal of Financial Engineering, 08, 2150026. https://doi.org/10.1142/S2424786321500262
  • Suryani, S., & Desy, M. (2022). Memprediksi financial distress melalui faktor internal pada perusahaan jasa sub sektor property dan real estate. Jurnal Ilmiah Akuntansi Kesatuan. https://doi.org/10.37641/jiakes.v10i3.1441
  • T.C. Ticaret Bakanlığı. (t.y.). Sektörler. Kolay İhracat. Retrieved January 11, 2025, from https://www.kolayihracat.gov.tr/sektorler/
  • Tang, X., Li, S., Tan, M., & Shi, W. (2020). Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods. Journal of Forecasting, 39(5), 769–787. https://doi.org/10.1002/FOR.2661
  • Tran, K. L., Le, H. A., Nguyen, T. H., & Nguyen, D. T. (2022). Explainable machine learning for financial distress prediction: Evidence from vietnam. Data, 7(11), 160. https://doi.org/10.3390/data7110160
  • Vanschoren, J. (2019). Meta-Learning. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds) Automated Machine Learning. The Springer Series on Challenges in Machine Learning. Springer, Cham. https://doi.org/10.1007/978-3-030-05318-5_2
  • Vebrizha, N., Nilwan, A., & Riswan. (2024). The impact of financial ratios on financial distress in the transportation sector. Asian Journal of Economics and Business Management, 3(1), 421-428. https://doi.org/10.53402/ajebm.v3i1.391
  • Wang, G., Chen, G., & Chu, Y. (2018). A new random subspace method incorporating sentiment and textual information for financial distress prediction. Electronic Commerce Research and Applications, 29, 30–49.
  • Wang, S., & Chi, G. (2024). Cost-sensitive stacking ensemble learning for company financial distress prediction. Expert Systems with Applications, 255. https://doi.org/10.1016/j.eswa.2024.124525
  • Widiastuti, W., & Ali Ikhsan, N. (2022). Pengaruh rasio likuiditas, profitabilitas, dan leverage terhadap financial distress. Eqien - Jurnal Ekonomi dan Bisnis, 11(04). https://doi.org/10.34308/eqien.v11i04.1287
  • Wisnu, F., & Astuti, D. P. (2023). Financial distress: Profitability ratios and liquidity ratios, with financial statement fraud as moderating. Economic Education Analysis Journal, 12(2), 15-26. https://doi.org/10.15294/eeaj.v12i2.67570
  • Xia, Y., Cheng, K., Cheng, Z., Rao, Y., & Pu, J. (2021). GBMVis: Visual analytics for interpreting gradient boosting machine. In Lecture Notes in Computer Science (Vol. 12983, pp. 63–72). Springer. https://doi.org/10.1007/978-3-030-88207-5_7
  • Ye, H.-J., Li, X.-C., & Zhan, D.-C. (2021). Task cooperation for semi-supervised few-shot learning. 35th AAAI Conference on Artificial Intelligence, AAAI 2021, 12A, 10682–10690.
  • Yu, L., Li, M., & Liu, X. (2024). A two-stage case-based reasoning driven classification paradigm for financial distress prediction with missing and imbalanced data. Expert Systems with Applications, 249, 123745. https://doi.org/10.1016/j.eswa.2024.123745
  • Zeng, S., Li, Y., & Yang, W. (2020). A financial distress prediction model based on sparse algorithm and support vector machine. Mathematical Problems in Engineering, 2020, 1–11. https://doi.org/10.1155/2020/5625271
  • Zhang, Z., Wu, C., Qu, S., & Chen, X. (2022). An explainable artificial intelligence approach for financial distress prediction. Information Processing and Management, 59(4), 102988. https://doi.org/10.1016/j.ipm.2022.102988
  • Zhao, S., Xu, K., Wang, Z., Liang, C., Lu, W., & Chen, B. (2022). Financial distress prediction by combining sentiment tone features. Economic Modelling, 106, 105709.
  • Zhong, J., & Wang, Z. (2022). Artificial intelligence techniques for financial distress prediction. AIMS Mathematics, 7(12), 20891–20908. https://doi.org/10.3934/math.20221145
Toplam 75 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Finans, Finans ve Yatırım (Diğer)
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Ahmet Akusta 0000-0002-5160-3210

Musa Gün 0000-0002-5020-9342

Yayımlanma Tarihi
Gönderilme Tarihi 10 Aralık 2024
Kabul Tarihi 22 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Akusta, A., & Gün, M. (t.y.). Predicting Financial Distress in The Textile Industry: A Comparative Analysis of Meta Models and Single Classifiers. Uluslararası Ekonomi İşletme Ve Politika Dergisi, 9(1), 20-36. https://doi.org/10.29216/ueip.1599431

Uluslararası Ekonomi, İşletme ve Politika Dergisi

Recep Tayyip Erdoğan Üniversitesi
İktisadi ve İdari Bilimler Fakültesi
İktisat Bölümü
RİZE / TÜRKİYE