Araştırma Makalesi
BibTex RIS Kaynak Göster

INFLUENCE OF ALUMINUM OXIDE NANOPARTICLES ON BIOLOGICAL FEATURES AND HOST HEMOCYTES OF Galleria mellonella L. (Lepidoptera: Pyralidae) WITH ITS ENDOPARASITOID Pimpla turionellae L. (Hymenoptera: Ichneumonidae)

Yıl 2024, , 197 - 208, 18.11.2024
https://doi.org/10.31467/uluaricilik.1475411

Öz

Nanoparticles (NPs) are released directly or indirectly into nature with increased production and consumption, and their effects on insects, which occupy a large place in the ecosystem, are of interest. There is also interest in the potentially toxic effects of NPs applied to hive pests on parasitoids, honey bees, and host-parasitoid relationships. The influence of aluminum oxide (Al2O3) NPs on the biological features of the hive pest Galleria mellonella, total counts of hemocyte, and hemocyte types; as well as on the biological features of the endoparasitoid Pimpla turionellae were investigated. The data obtained revealed that Al2O3 NPs caused a decrease in the larval, pupal, and adult development time of G. mellonella. The immature developmental time of P. turionellae was reduced. It was also demonstrated that Al2O3 NPs decreased the total counts of hemocytes in G. mellonella larvae; granulocyte, spherulocyte, oenocytoid, and prohemocyte counts decreased at all NP concentrations, while plasmatocyte counts increased. The data showed that Al2O3 NPs affected the biological properties of the hive pest model organism G. mellonella and indirectly affected its endoparasitoid P. turionellae. In addition, Al2O3 NPs showed a suppressive effect on cellular immune system responses, decreasing hemocyte counts. Our study results suggest that honey bees, honeycomb pests, and parasitoids may be negatively affected by NPs, which have increased in recent years as environmental pollutants, and that NPs may have insecticidal effects.

Destekleyen Kurum

Kocaeli University

Proje Numarası

2020-2296

Teşekkür

Tuğba Nur ELLİBEŞ GÖKKAYA

Kaynakça

  • Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol. 2019; 103: 2913-2935. doi.org/10.1007/s00253-019-09675-5.
  • Altuntaş H. Effects of ethephon on the hemolymph metabolites of the greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae). Acta Phys. Pol. A. 2015; 128 (2): 182-183. doi.org/10.12693/aphyspola.128.b-182.
  • Altuntaş H, Kılıç AY, Uçkan F, Ergin E. Effects of gibberellic acid on hemocytes of Galleria mellonella L. (Lepidoptera: Pyralidae). Environ. Entomol. 2012; 41 (3): 688-696. doi.org/10.1603/EN11307.
  • Assar A, Mahmoud SZ, Mahmoud SH. Comparative bioactivity of silver, aluminum oxide, and zinc oxide nanoparticles on the house fly “Musca Domestica L. (Diptera: Muscidae)”. Egypt. J. Zool. 2022; 78(78): 61-72. doi.org/10.21608/ejz.2022.124472.1075.
  • Bankier C, Matharu RK, Cheong YK, Ren GG, Cloutman-Green E, Ciric L. Synergistic antibacterial effects of metallic nanoparticle combinations. Sci. Rep. 9(1): 16074, 2019, doi.org/10.1038/s41598-019-52473-2.
  • Banville N, Browne N, Kavanagh K. Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence. 2012; 3(6): 497-503. doi.org/10.4161/viru.21972.
  • Barabasz W, Albinska D, Jaskowska M, Lipiec J. Ecotoxicology of aluminium. Pol. J. Environ. Stud. 20021; 1(3): 199-203.
  • Belal R, Gad A. Zinc oxide nanoparticles induce oxidative stress, genotoxicity, and apoptosis in the hemocytes of Bombyx mori larvae. Sci. Rep. 2023; 13 (1): 3520. doi.org/10.1038/s41598-023-30444-y.
  • Bronskill JF. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). J. Lep. Soc. 1961; 15(2): 102-104.
  • Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013; 4(7): 597-603. doi.org/10.4161/viru.25906.
  • Coskun M, Kayis T, Yilmaz M, Dursun O, Emre I. Copper and zinc impact on stress biomarkers and growth parameters in a model organism, Galleria mellonella larvae. Biometals. 2021; 34(6): 1263-1273. doi.org/10.1007/s10534-021-00341-w.
  • Das S, Yadav A, Debnath N. Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): A comparative analysis. J. Stored Prod. Res. 2019; 83: 92-96. doi.org/10.1016/j.jspr.2019.06.003.
  • Demirtürk Z, Uçkan F, Mert S. Interactions of alumina and polystyrene nanoparticles with the innate immune system of Galleria mellonella. Drug Chem. Toxicol. 2023: 1-13. doi.org/10.1080/01480545.2023.2217484.
  • Egorova KS, Ananikov VP. Toxicity of metal compounds: knowledge and myths. Organometallics. 2017; 36(21): 4071-4090. doi.org/10.1021/acs.organomet.7b00605.
  • Er A, Uçkan F, Rivers DB, Sak O. Cytotoxic effects of parasitism and application of venom from the endoparasitoid Pimpla turionellae on hemocytes of the host Galleria mellonella. J. Appl. Entomol. 2011; 135(3): 225-236. doi.org/10.1111/j.1439-0418.2010.01528.x.
  • Eskin A, Bozdoğan H. Effects of the copper oxide nanoparticles (CuO NPs) on Galleria mellonella hemocytes. Drug Chem. Toxicol. 2022; 45(4): 1870-1880. doi.org/10.1080/01480545.2021.1892948.
  • Eskin A, Nurullahoğlu ZU. Effects of zinc oxide nanoparticles (ZnO NPs) on the biology of Galleria mellonella L. (Lepidoptera: Pyralidae). J. Basic Appl. Zool. 2022; 83(1): 54. doi.org/10.1186/s41936-022-00318-2.
  • Eskin AN, Öztürk Ş, Eskin A. The effects of magnetic iron oxide nanoparticles (Fe3O4) on some biological aspects of Galleria mellonella L. (Lepidoptera: Pyralidae). Celal Bayar University Journal of Science. 2021; 17(3): 319-324. doi.org/10.18466/cbayarfbe.920637.
  • Fricault VJ. Effects of Exposure to Aluminum Oxide (Al2O3) and Cerium Oxide (CEO2) Nanoparticles on Human Alveolar Cells in vitro. PhD, The University of North Carolina, Greensboro, US, 2018.
  • Gwokyalya R, Altuntaş H. Boric acid‐induced immunotoxicity and genotoxicity in model insect Galleria mellonella L. (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 2019; 101: e21588. doi.org/10.1002/arch.21588.
  • Hung KLJ, Kingston JM, Albrecht M, Holway DA, Kohn JR. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B. 2018; 285(1870): 20172140. doi.org/10.1098/rspb.2017.2140
  • Ismail T, Salama MA, El-Ebiary M. Entomotoxic effects of synthesized aluminum oxide nanoparticles against Sitophilus oryzae and their toxicological effects on albino rats. Toxicol. Ind. Health. 2021; 37(10): 594-602. doi.org/10.1177/07482337211035000
  • Kansu IA, Uğur A. Pimpla turionellae (L.) (Hym., Ichneumonidae) ile konukçusu bazı Lepidopter pupaları arasındaki biyolojik ilişkiler üzerinde araştırmalar. Doğa Bilim Dergisi 198; 8(2): 160-172.
  • Kara A, Özalp P, Tunçsoy B. Effects of Aluminum Oxide on Total Hemocyte Counts of Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvae. Eurasian J. Bio. Chem. Sci. 2020; 3(1): 195-198. doi.org/10.46239/ejbcs.820690
  • Kaya S, Uçkan F, Er A. Influence of indole-3-acetic acid on cellular immune responses of Galleria mellonella L. (Lepidoptera: Pyralidae) and Pimpla turionellae L. (Hymenoptera: Ichneumonidae) in a host-parasitoid system. Int. J. Trop. Insect Sci. 2021; 41: 169-179. doi.org/10.1007/s42690-020-00190-z
  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere. 2011; 83(8): 1124-1132. doi.org/10.1016/j.chemosphere.2011.01.025
  • Kumar H, Venkatesh N, Bhowmik H, Kuila A. Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 2018; 4(2): 3765-3775. doi.org/10.26717/BJSTR.2018.04.001011
  • Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 2002; 32(10): 1295-1309. doi.org/10.1016/S0965-1748(02)00092-9
  • López-Muñoz D, Ochoa-Zapater MA, Torreblanca A, Garcer MD. Evaluation of the effects of titanium dioxide and aluminum oxide nanoparticles through tarsal contact exposure in the model insect Oncopeltus fasciatus. Sci. Total Environ. 2019; 666: 759-765. doi.org/10.1016/j.scitotenv.2019.02.218
  • Mir AH, Qamar A, Qadir I, Naqvi AH, Begum R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep. 2020; 10(1): 1617. doi.org/10.1038/s41598-020-58526-1
  • Nurullahoğlu UZ, Eskin A, Kaya S. Effects of zinc oxide nanoparticles on hemocytes of Galleria mellonella (L.) (Lepidoptera: Pyralidae). In: International Conference on Civil and Environmental Engineering Nevsehir, Turkey, 2015: 20-23.
  • O'Connell DP, Baker BM, Atauri D, Jones JC. Increasing temperature and time in glasshouses increases honey bee activity and affects internal brood conditions. J. Insect Physiol. 2024:104635. doi.org/10.1016/j.jinsphys.2024.104635
  • Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere. 2010; 79(1): 113-116. doi.org/10.1016/j.chemosphere.2009.12.056
  • Pittarate S, Rajula J, Rahman A, Vivekanandhan P, Thungrabeab M, Mekchay S. et al. Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects. 2021; 12(11): 1017. doi.org/10.3390/insects12111017
  • Poborilova Z, Opatrilova R, Babula P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot. 2013; 91: 1-11. doi.org/10.1016/j.envexpbot.2013.03.002
  • Sahayaraj K. Nano and bio-nanoparticles for insect control. Res. J. Nanosci. Nanotech. 2017; (1): 1-9.
  • Sak O, Uçkan F, Ergin E. Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (Hymenoptera: Ichneumonidae). Belg. J. Zool. 2006; 136: 53–58.
  • Sang W, Xu J, Bashir MH, Ali S. Developmental responses of Cryptolaemus montrouzieri to heavy metals transferred across multi-trophic food chain. Chemosphere. 2018; 205: 690-697. doi.org/10.1016/j.chemosphere.2018.02.073.
  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 2009; 185(3): 211-218. doi.org/10.1016/j.toxlet.2009.01.008.
  • Tunçsoy BS. Toxicity of nanoparticles on insects: A Review. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 1 (2): 49-61, 2018.
  • Tuncsoy B, Mese Y. Influence of titanium dioxide nanoparticles on bioaccumulation, antioxidant defense and immune system of Galleria mellonella L. Environ. Sci. Pollut. Res. Int. 2021; 28(28): 38007-38015. https://doi.org/10.1007/s11356-021-13409-4.
  • Tunçsoy B, Sugeçti S, Büyükgüzel E, Özalp P, Büyükgüzel K. Effects of copper oxide nanoparticles on immune and metabolic parameters of Galleria mellonella L. Bull. Environ. Contam. Toxicol . 2021; 107(3): 412-420. doi.org/10.1007/s00128-021-03261-0.
  • Uçkan F, Demirtürk Z, Tetik HM. Influence of Indol-3-Acetic Acid on hemolymph chemistry of the host Galleria mellonella Linnaeus (Lepidoptera: Pyralidae). Kocaeli Üniversitesi Fen Bilimleri Dergisi. 2021; 4(1): 38-42.
  • Uçkan F, Gülel A. Age‐related fecundity and sex ratio variation in Apanteles galleriae (Hymenoptera: Braconidae) and host effect on fecundity and sex ratio of its hyperparasitoid Dibrachys boarmiae (Hymenoptera: Pteromalidae). J. Appl. Entomol. 2002; 126(10): 534-537. doi.org/10.1046/j.1439-0418.2002.00706.x.
  • Uçkan F, Özbek R, Ergin E. Effects of Indol-3-Acetic Acid on the biology of Galleria mellonella and its endoparasitoid Pimpla turionellae. Belg. J. Zool. 2015; 145(1): 49-58. doi.org/10.26496/bjz.2015.57
  • Uçkan F, Öztürk Z, Altuntaş H, Ergin E. Effects of gibberellic acid (GA3) on biological parameters and hemolymph metabolites of the pupal endoparasitoid Pimpla turionellae (Hymenoptera: Ichneumonidae) and its host Galleria mellonella (Lepidoptera: Pyralidae). J. Entomol. Res. Soc. 2011; 13(3): 1-14.
  • Uçkan F, Sak O. Cytotoxic effect of cypermethrin on Pimpla turionellae (Hymenoptera: Ichneumonidae) larval hemocytes. Ekoloji. 2010; 19: 20-26. doi.org/10.5053/ekoloji.2010.753.
  • Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold I, et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev.Toxicol. 2014; 44(4): 1-80. doi.org/10.3109/10408444.2014.934439.
  • Wu G, Yi Y. Effects of dietary heavy metals on the immune and antioxidant systems of Galleria mellonella larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015; 167: 131-139. doi.org/10.1016/j.cbpc.2014.10.004.
  • Yanar O, Topkara EF, Solmaz FG, Mercan S. Synergistic effects of Zn, Cu, and Ni and Bacillus thuringiensis on the hemocyte count and the antioxidant activities of Hyphantria cunea Drury (Lepidoptera: Arctiidae) larvae. Ecotoxicol. 2022; 31(1): 85-91. doi.org/10.1007/s10646-021-02493-4.
  • Yucel MS, Kayis T. Imidacloprid induced alterations in oxidative stress, biochemical, genotoxic, and immunotoxic biomarkers in non-mammalian model organism Galleria mellonella L. (Lepidoptera: Pyralidae). J. Environ. Sci. Health B. 2022; 54(1): 27-34. doi.org/10.1080/03601234.2018.1530545.
  • Zorlu T, Nurullahoğlu ZU, Altuntaş H. Influence of dietary titanium dioxide nanoparticles on the biology and antioxidant system of model insect, Galleria mellonella (L.) (Lepidoptera: Pyralidae). J. Entomol. Res. Soc. 2018; 20(3): 89-103.

Alüminyum Oksit Nanopartiküllerinin Galleria mellonella L. (Lepidoptera: Pyralidae) ile Endoparazitoiti Pimpla turionellae L. (Hymenoptera: Ichneumonidae)’nın Biyolojik Özellikleri ve Konak Hemositleri Üzerine Etkisi

Yıl 2024, , 197 - 208, 18.11.2024
https://doi.org/10.31467/uluaricilik.1475411

Öz

Dünya çapında üretim ve tüketimin artmasıyla birlikte nanopartiküller (NP’ler) doğrudan ya da dolaylı olarak doğaya salınmaktadır ve ekosistemde büyük bir yer kaplayan böceklerde etkileri merak uyandırmaktadır. Ayrıca kovan zararlısına uygulanan NP’lerin parazitoitler üzerinde muhtemel toksik etkileri, diğer bir deyişle bal arıları ve konak-parazitoit ilişkileri ilgi çekmektedir. Bu nedenle alüminyum oksit (Al2O3) NP’lerin kovan zararlısı Galleria mellonella’nın biyolojik özellikleri, toplam hemosit sayısı ve hemosit tipleri ile endoparazitoid Pimpla turionellae’nın biyolojik özellikleri üzerindeki etkisi araştırıldı. Elde edilen veriler, Al2O3 NP'lerin G. mellonella’nın larva, pupa ve ergin gelişim sürelerinde azalmaya neden olduğunu ortaya koydu. P. turionellae’nın ise olgunlaşma öncesi gelişim süresi kısaldı. Aynı zamanda Al2O3 NP'lerin G. mellonella larvalarındaki toplam hemosit sayısını azalttığı; granülosit, sferülosit, önositoid ve prohemosit sayılarının tüm NP konsantrasyonlarında azaldığı, plazmatosit sayılarının ise arttığı tespit edildi. Bulgular, Al2O3 NP'lerin kovan zararlısı model organizma G. mellonella’nın biyolojik özelliklerini etkilediğini ve endoparazitoiti P. turionellae’nın dolaylı olarak etkilendiğini gösterdi. Ayrıca Al2O3 NP'lerin hücresel bağışıklık sistemi tepkileri arasında yer alan hemosit sayılarının azalması ile sonuçlanarak baskılayıcı etki gösterdiği görüldü. Çalışma sonuçlarımız bal arılarının, petek zararlılarının ve parazitoitlerinin çevresel kirleticiler olarak son yıllarda artan NP’lerden olumsuz etkileneceği ve NP’lerin insektisidal etki gösterebileceği düşüncesini ortaya koymaktadır.

Destekleyen Kurum

Kocaeli Üniversitesi

Proje Numarası

2020-2296

Teşekkür

Tuğba Nur ELLİBEŞ GÖKKAYA

Kaynakça

  • Ahmad F, Ashraf N, Ashraf T, Zhou RB, Yin DC. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol. 2019; 103: 2913-2935. doi.org/10.1007/s00253-019-09675-5.
  • Altuntaş H. Effects of ethephon on the hemolymph metabolites of the greater wax moth Galleria mellonella L. (Lepidoptera: Pyralidae). Acta Phys. Pol. A. 2015; 128 (2): 182-183. doi.org/10.12693/aphyspola.128.b-182.
  • Altuntaş H, Kılıç AY, Uçkan F, Ergin E. Effects of gibberellic acid on hemocytes of Galleria mellonella L. (Lepidoptera: Pyralidae). Environ. Entomol. 2012; 41 (3): 688-696. doi.org/10.1603/EN11307.
  • Assar A, Mahmoud SZ, Mahmoud SH. Comparative bioactivity of silver, aluminum oxide, and zinc oxide nanoparticles on the house fly “Musca Domestica L. (Diptera: Muscidae)”. Egypt. J. Zool. 2022; 78(78): 61-72. doi.org/10.21608/ejz.2022.124472.1075.
  • Bankier C, Matharu RK, Cheong YK, Ren GG, Cloutman-Green E, Ciric L. Synergistic antibacterial effects of metallic nanoparticle combinations. Sci. Rep. 9(1): 16074, 2019, doi.org/10.1038/s41598-019-52473-2.
  • Banville N, Browne N, Kavanagh K. Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence. 2012; 3(6): 497-503. doi.org/10.4161/viru.21972.
  • Barabasz W, Albinska D, Jaskowska M, Lipiec J. Ecotoxicology of aluminium. Pol. J. Environ. Stud. 20021; 1(3): 199-203.
  • Belal R, Gad A. Zinc oxide nanoparticles induce oxidative stress, genotoxicity, and apoptosis in the hemocytes of Bombyx mori larvae. Sci. Rep. 2023; 13 (1): 3520. doi.org/10.1038/s41598-023-30444-y.
  • Bronskill JF. A cage to simplify the rearing of the greater wax moth, Galleria mellonella (Pyralidae). J. Lep. Soc. 1961; 15(2): 102-104.
  • Browne N, Heelan M, Kavanagh K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence. 2013; 4(7): 597-603. doi.org/10.4161/viru.25906.
  • Coskun M, Kayis T, Yilmaz M, Dursun O, Emre I. Copper and zinc impact on stress biomarkers and growth parameters in a model organism, Galleria mellonella larvae. Biometals. 2021; 34(6): 1263-1273. doi.org/10.1007/s10534-021-00341-w.
  • Das S, Yadav A, Debnath N. Entomotoxic efficacy of aluminium oxide, titanium dioxide and zinc oxide nanoparticles against Sitophilus oryzae (L.): A comparative analysis. J. Stored Prod. Res. 2019; 83: 92-96. doi.org/10.1016/j.jspr.2019.06.003.
  • Demirtürk Z, Uçkan F, Mert S. Interactions of alumina and polystyrene nanoparticles with the innate immune system of Galleria mellonella. Drug Chem. Toxicol. 2023: 1-13. doi.org/10.1080/01480545.2023.2217484.
  • Egorova KS, Ananikov VP. Toxicity of metal compounds: knowledge and myths. Organometallics. 2017; 36(21): 4071-4090. doi.org/10.1021/acs.organomet.7b00605.
  • Er A, Uçkan F, Rivers DB, Sak O. Cytotoxic effects of parasitism and application of venom from the endoparasitoid Pimpla turionellae on hemocytes of the host Galleria mellonella. J. Appl. Entomol. 2011; 135(3): 225-236. doi.org/10.1111/j.1439-0418.2010.01528.x.
  • Eskin A, Bozdoğan H. Effects of the copper oxide nanoparticles (CuO NPs) on Galleria mellonella hemocytes. Drug Chem. Toxicol. 2022; 45(4): 1870-1880. doi.org/10.1080/01480545.2021.1892948.
  • Eskin A, Nurullahoğlu ZU. Effects of zinc oxide nanoparticles (ZnO NPs) on the biology of Galleria mellonella L. (Lepidoptera: Pyralidae). J. Basic Appl. Zool. 2022; 83(1): 54. doi.org/10.1186/s41936-022-00318-2.
  • Eskin AN, Öztürk Ş, Eskin A. The effects of magnetic iron oxide nanoparticles (Fe3O4) on some biological aspects of Galleria mellonella L. (Lepidoptera: Pyralidae). Celal Bayar University Journal of Science. 2021; 17(3): 319-324. doi.org/10.18466/cbayarfbe.920637.
  • Fricault VJ. Effects of Exposure to Aluminum Oxide (Al2O3) and Cerium Oxide (CEO2) Nanoparticles on Human Alveolar Cells in vitro. PhD, The University of North Carolina, Greensboro, US, 2018.
  • Gwokyalya R, Altuntaş H. Boric acid‐induced immunotoxicity and genotoxicity in model insect Galleria mellonella L. (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 2019; 101: e21588. doi.org/10.1002/arch.21588.
  • Hung KLJ, Kingston JM, Albrecht M, Holway DA, Kohn JR. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B. 2018; 285(1870): 20172140. doi.org/10.1098/rspb.2017.2140
  • Ismail T, Salama MA, El-Ebiary M. Entomotoxic effects of synthesized aluminum oxide nanoparticles against Sitophilus oryzae and their toxicological effects on albino rats. Toxicol. Ind. Health. 2021; 37(10): 594-602. doi.org/10.1177/07482337211035000
  • Kansu IA, Uğur A. Pimpla turionellae (L.) (Hym., Ichneumonidae) ile konukçusu bazı Lepidopter pupaları arasındaki biyolojik ilişkiler üzerinde araştırmalar. Doğa Bilim Dergisi 198; 8(2): 160-172.
  • Kara A, Özalp P, Tunçsoy B. Effects of Aluminum Oxide on Total Hemocyte Counts of Galleria mellonella (L.) (Lepidoptera: Pyralidae) Larvae. Eurasian J. Bio. Chem. Sci. 2020; 3(1): 195-198. doi.org/10.46239/ejbcs.820690
  • Kaya S, Uçkan F, Er A. Influence of indole-3-acetic acid on cellular immune responses of Galleria mellonella L. (Lepidoptera: Pyralidae) and Pimpla turionellae L. (Hymenoptera: Ichneumonidae) in a host-parasitoid system. Int. J. Trop. Insect Sci. 2021; 41: 169-179. doi.org/10.1007/s42690-020-00190-z
  • Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere. 2011; 83(8): 1124-1132. doi.org/10.1016/j.chemosphere.2011.01.025
  • Kumar H, Venkatesh N, Bhowmik H, Kuila A. Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 2018; 4(2): 3765-3775. doi.org/10.26717/BJSTR.2018.04.001011
  • Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 2002; 32(10): 1295-1309. doi.org/10.1016/S0965-1748(02)00092-9
  • López-Muñoz D, Ochoa-Zapater MA, Torreblanca A, Garcer MD. Evaluation of the effects of titanium dioxide and aluminum oxide nanoparticles through tarsal contact exposure in the model insect Oncopeltus fasciatus. Sci. Total Environ. 2019; 666: 759-765. doi.org/10.1016/j.scitotenv.2019.02.218
  • Mir AH, Qamar A, Qadir I, Naqvi AH, Begum R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep. 2020; 10(1): 1617. doi.org/10.1038/s41598-020-58526-1
  • Nurullahoğlu UZ, Eskin A, Kaya S. Effects of zinc oxide nanoparticles on hemocytes of Galleria mellonella (L.) (Lepidoptera: Pyralidae). In: International Conference on Civil and Environmental Engineering Nevsehir, Turkey, 2015: 20-23.
  • O'Connell DP, Baker BM, Atauri D, Jones JC. Increasing temperature and time in glasshouses increases honey bee activity and affects internal brood conditions. J. Insect Physiol. 2024:104635. doi.org/10.1016/j.jinsphys.2024.104635
  • Pan X, Redding JE, Wiley PA, Wen L, McConnell JS, Zhang B. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay. Chemosphere. 2010; 79(1): 113-116. doi.org/10.1016/j.chemosphere.2009.12.056
  • Pittarate S, Rajula J, Rahman A, Vivekanandhan P, Thungrabeab M, Mekchay S. et al. Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects. 2021; 12(11): 1017. doi.org/10.3390/insects12111017
  • Poborilova Z, Opatrilova R, Babula P. Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ. Exp. Bot. 2013; 91: 1-11. doi.org/10.1016/j.envexpbot.2013.03.002
  • Sahayaraj K. Nano and bio-nanoparticles for insect control. Res. J. Nanosci. Nanotech. 2017; (1): 1-9.
  • Sak O, Uçkan F, Ergin E. Effects of cypermethrin on total body weight, glycogen, protein, and lipid contents of Pimpla turionellae (Hymenoptera: Ichneumonidae). Belg. J. Zool. 2006; 136: 53–58.
  • Sang W, Xu J, Bashir MH, Ali S. Developmental responses of Cryptolaemus montrouzieri to heavy metals transferred across multi-trophic food chain. Chemosphere. 2018; 205: 690-697. doi.org/10.1016/j.chemosphere.2018.02.073.
  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A. DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol. Lett. 2009; 185(3): 211-218. doi.org/10.1016/j.toxlet.2009.01.008.
  • Tunçsoy BS. Toxicity of nanoparticles on insects: A Review. Artıbilim: Adana Bilim ve Teknoloji Üniversitesi Fen Bilimleri Dergisi. 1 (2): 49-61, 2018.
  • Tuncsoy B, Mese Y. Influence of titanium dioxide nanoparticles on bioaccumulation, antioxidant defense and immune system of Galleria mellonella L. Environ. Sci. Pollut. Res. Int. 2021; 28(28): 38007-38015. https://doi.org/10.1007/s11356-021-13409-4.
  • Tunçsoy B, Sugeçti S, Büyükgüzel E, Özalp P, Büyükgüzel K. Effects of copper oxide nanoparticles on immune and metabolic parameters of Galleria mellonella L. Bull. Environ. Contam. Toxicol . 2021; 107(3): 412-420. doi.org/10.1007/s00128-021-03261-0.
  • Uçkan F, Demirtürk Z, Tetik HM. Influence of Indol-3-Acetic Acid on hemolymph chemistry of the host Galleria mellonella Linnaeus (Lepidoptera: Pyralidae). Kocaeli Üniversitesi Fen Bilimleri Dergisi. 2021; 4(1): 38-42.
  • Uçkan F, Gülel A. Age‐related fecundity and sex ratio variation in Apanteles galleriae (Hymenoptera: Braconidae) and host effect on fecundity and sex ratio of its hyperparasitoid Dibrachys boarmiae (Hymenoptera: Pteromalidae). J. Appl. Entomol. 2002; 126(10): 534-537. doi.org/10.1046/j.1439-0418.2002.00706.x.
  • Uçkan F, Özbek R, Ergin E. Effects of Indol-3-Acetic Acid on the biology of Galleria mellonella and its endoparasitoid Pimpla turionellae. Belg. J. Zool. 2015; 145(1): 49-58. doi.org/10.26496/bjz.2015.57
  • Uçkan F, Öztürk Z, Altuntaş H, Ergin E. Effects of gibberellic acid (GA3) on biological parameters and hemolymph metabolites of the pupal endoparasitoid Pimpla turionellae (Hymenoptera: Ichneumonidae) and its host Galleria mellonella (Lepidoptera: Pyralidae). J. Entomol. Res. Soc. 2011; 13(3): 1-14.
  • Uçkan F, Sak O. Cytotoxic effect of cypermethrin on Pimpla turionellae (Hymenoptera: Ichneumonidae) larval hemocytes. Ekoloji. 2010; 19: 20-26. doi.org/10.5053/ekoloji.2010.753.
  • Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold I, et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit. Rev.Toxicol. 2014; 44(4): 1-80. doi.org/10.3109/10408444.2014.934439.
  • Wu G, Yi Y. Effects of dietary heavy metals on the immune and antioxidant systems of Galleria mellonella larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2015; 167: 131-139. doi.org/10.1016/j.cbpc.2014.10.004.
  • Yanar O, Topkara EF, Solmaz FG, Mercan S. Synergistic effects of Zn, Cu, and Ni and Bacillus thuringiensis on the hemocyte count and the antioxidant activities of Hyphantria cunea Drury (Lepidoptera: Arctiidae) larvae. Ecotoxicol. 2022; 31(1): 85-91. doi.org/10.1007/s10646-021-02493-4.
  • Yucel MS, Kayis T. Imidacloprid induced alterations in oxidative stress, biochemical, genotoxic, and immunotoxic biomarkers in non-mammalian model organism Galleria mellonella L. (Lepidoptera: Pyralidae). J. Environ. Sci. Health B. 2022; 54(1): 27-34. doi.org/10.1080/03601234.2018.1530545.
  • Zorlu T, Nurullahoğlu ZU, Altuntaş H. Influence of dietary titanium dioxide nanoparticles on the biology and antioxidant system of model insect, Galleria mellonella (L.) (Lepidoptera: Pyralidae). J. Entomol. Res. Soc. 2018; 20(3): 89-103.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hayvan Bilimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ezgi Çoğal Bu kişi benim 0000-0001-6365-5328

Zülbiye Demirtürk 0000-0002-3107-4278

Fevzi Uçkan 0000-0001-9304-4296

Proje Numarası 2020-2296
Erken Görünüm Tarihi 12 Kasım 2024
Yayımlanma Tarihi 18 Kasım 2024
Gönderilme Tarihi 30 Nisan 2024
Kabul Tarihi 18 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

Vancouver Çoğal E, Demirtürk Z, Uçkan F. INFLUENCE OF ALUMINUM OXIDE NANOPARTICLES ON BIOLOGICAL FEATURES AND HOST HEMOCYTES OF Galleria mellonella L. (Lepidoptera: Pyralidae) WITH ITS ENDOPARASITOID Pimpla turionellae L. (Hymenoptera: Ichneumonidae). U.Arı D.-U.Bee J. 2024;24(2):197-208.

Önemli Not: Dergimizde yazar-hakem bilgileri iki taraflı gizli tutulduğundan hem yazar ve hem de hakemlerin belgeyi incele kısmında kişisel bilgilerini kaldırdıktan sonra belgeyi sisteme yüklemesi gerekmektedir.

Akademik teşvik kapsamında makale bilgilerininin  kopyalanmasının sorun olması durumunda dergimizin ana web sayfasının kullanılması bilgilerinize sunulur.

https://creativecommons.org/licenses/by-nc-nd/4.0/

download 

work is licensed under Attribution-NonCommercial-NoDerivatives 4.0 International.