Research Article
BibTex RIS Cite

The Effect Of Cu Doping On The Structural Properties And Electrical Resistivity Of MAPbI3 Perovskite Thin Films

Year 2022, Volume: 14 Issue: 2, 544 - 551, 31.07.2022
https://doi.org/10.29137/umagd.1050430

Abstract

Perovskite thin films have good power conversion efficiency because they have high carrier mobility and a long carrier lifetime. As a result of the research, the yield of perovskite materials has recently reached a maximum efficiency of 31% in the laboratory environment. To investigate the effects of doping on perovskite thin films' structural, surface, and electrical resistivity, structural properties of undoped and 10% Cu-doped perovskite thin films were characterized with XRD, FESEM, EDX, and AFM. Their electrical measurements are carried out using four-point probe method. The resistivity of undoped and 10% Cu-doped perovskite thin films decreased asymptotically with voltage increase.

References

  • Barrows, A. T., Pearson, A. J., Kwak, C. K., Dunbar, A. D. F., Buckley, A. R., Lidzey, D. G. (2014). Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells Deposited via Spray-Deposition, Energy Environ. Sci. 7, 2944–2950. doi:10.1039/C4EE01546K.
  • Basumatary, P., Agarwal, P. (2020). Photocurrent transient measurements in MAPbI3 thin flms, Journal of Materials Science: Materials in Electronics, 31, 10047–10054. doi:10.1007/s10854-020-03549-7.
  • Brenner, T.M., Rakita, Y., Orr, Y., Klein, E., Feldman, I., Elbaum, M., Cahen, D., Hodes, G. (2016). Conversion of single crystalline PbI2 to CH3NH3PbI3: Structural relations and transformation dynamics, Chem. Mater., 28, 6501–6510. doi:10.1021/acs.chemmater.6b01747.
  • Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M. (2013), Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 316–320. doi:10.1038/nature12340.
  • Chen, C. -W., Kang, H. -W., Hsiao, S. -Y., Yang, P. -F., Chiang, K. -M., Lin, H. -W. (2014). Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition, Adv. Mater. 26, 6647–6652. doi: 10.1002/adma.201402461.
  • Chen, H. (2017). Two-Step Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application, Adv. Funct. Mater., 27, 1–19. doi: 10.1002/adfm.201605654.
  • Chen, H., Wei, Z., Zheng, X., Yang, S. (2015). A scalable electrodeposition route to the lowcost, versatile and controllable fabrication of perovskite solar cells, Nano Energy, 15, 216–226. doi:10.1016/j.nanoen.2015.04.025.
  • Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. -S., Wang, H. -H., Liu, Y., Li, G., Yang, Y. (2014). Planar Heterojunction Perovskite Solar Cells Via Vapor-Assisted Solution Process, J. Am. Chem. Soc. 136, 622–625. doi:10.1021/ja411509g.
  • Chiang, C.-H., Tseng, Z.-L., Wu, C.-G. (2014). Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process, J. Mater. Chem. A, 2, 15897–15903. doi:10.1039/c4ta03674c.
  • Choi, H., Jeong, J., Kim, H., Kim, S., Walker, B., Kim, G., Kim, J.Y. (2014). Cesium doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy, 7 80-85. doi:10.1016/j.nanoen.2014.04.017.
  • Costa, J.C.S., Azevedo, J., Araujo, J.P., Santos, L.M.N.B.F., Mendes, A. (2018). High purity and crystalline thin films of methylammonium lead iodide perovskites by a vapor deposition approach, Thin Solid Films, 664, 12-18. doi:10.1016/j.tsf.2018.08.026.
  • Docampo, P., Hanusch, F. C., Stranks, S. D., Döblinger, M., Feckl, J. M., Ehrensperger, M., Minar, N. K., Johnston, M. B., Snaith, H. J., Bein, T. (2014). Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells, Adv. Energy Mater. 4, 1400355. doi: 10.1002/aenm.201400355.
  • Filho, J. M. C. S. and Marques, F. C. (2018), Growth of Perovskite Nanorods from PbS Quantum Dots, Energy and Sustainability, 3, 1843-1848. doi: 10.1557/adv.2018.188.
  • Goldschmidt, V. M. (1926). Die Gesetze Der Krystallochemie, Die Naturwissenschaften, 14 477–485. doi: 0.1007/BF01507527.
  • Guo, X., McCleese, C., Kolodziej, C., Samia, A.C., Zhao, Y., Burda, C. (2016). Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite, Dalton Trans., 45, 3806–3813. doi: 10.1039/c5dt04420k.
  • Gustav, R. (1840). Beschreibung Einiger Neuen Mineralien Des Urals, Annalen Der Physik, 126(8) 652–56, doi: 10.1002/andp.18401260807.
  • Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3, 4088–4093. doi: 10.1039/c1nr10867k.
  • Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S. (2014). Seok, S., Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells, Nat. Mater. 13, 897–903. doı: 10.1038/nmat4014.
  • Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Il Seol, S. (2014). Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater. 13 897–903. doi:10.1038/nmat4014.
  • Leyden, M. R., Ono, L. K., Raga, S. R., Kato, Y., Wang, S., Qi, Y. (2014). High Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition, J. Mater. Chem. A 2, 18742-18745. doi:10.1039/c4ta04385e.
  • Liu, J., Gao, C., He, X.L., Ye, Q.Y., Ouyang, L.Q., Zhuang, D.M., Liao, C., Mei, J., Lau, W.M. (2015). Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell, Acs Appl. Mater. Inter., 7, 24008–24015. doi: 10.1021/acsami.5b06780.
  • Perez, M., Peled, S. S., Templeman, T., Osherov, A., Bulovic, V., Katz, E. A., Golan, Y. (2020). A Two-Step All Solution Process for Conversion of Lead Sulfide to Methylammonium Lead Iodide Perovskite Thin Films, Thin Solid Films, 714, 138367. doi: 10.1016/j.tsf.2020.138367.
  • Sun, X., Zhang, C.F., Chang, J.J., Yang, H.F., Xi, H., Lu, G., Chen, D.Z., Lin, Z.H., Lu, X.L., Zhang, J.C., Hao, Y. (2016). Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement, Nano Energy, 28, 417–425. doi: 10.1016/j.nanoen.2016.08.055.
  • Xiao, M.D., Huang, F.Z., Huang, W.C., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y.B., Spiccia, L. (2014). A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells, Angew Chem. Int. Edit. 53, 9898–9903. doi: 10.1002/anie.201405334.
  • Zhou, Y., Yang, M., Vasiliev, A.L., Garces, H.F., Zhao, Y., Wang, D., Pang, S., Zhu, K., Padture, N.P. (2015). Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells, J. Mater. Chem. A, 3, 9249– 9256. doi:10.1039/c4ta07036d.
  • Zhou, Y.Y., Yang, M.J., Wu, W.W., Vasiliev, A.L., Zhu, K., Padture, N.P. (2015). Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells, J. Mater. Chem. A, 3, 8178–8184. doi: 10.1039/c5ta00477b.

Cu katkısının MAPbI3 Perovskit İnce Filmlerin Yapısal Özellikleri ve Elektriksel Özdirenç Üzerine Etkisi

Year 2022, Volume: 14 Issue: 2, 544 - 551, 31.07.2022
https://doi.org/10.29137/umagd.1050430

Abstract

Perovskit ince filmler yüksek taşıyıcı hareketliliği ve uzun taşıyıcı ömrüne sahip olduğundan tatmin edici bir güç dönüşüm verimliliğine sahiplerdir. Araştırmalar sonucu perovskit malzemelerin verimi son dönemlerde laboratuvar ortamında yaklaşık maksimum %31 verimliliğe ulaşmıştır. Bu amaçla katkılandırmanın perovskit ince filmlerinin yapısal, yüzeysel ve elektriksel özdirenç üzerine etkilerini araştırmak için, üretilen katkısız perovskit ince filmleri ve %10 Cu katkılı perovskit ince filmlerin XRD, EDX, FESEM ve AFM ile yapısal özellikleri ile birlikte four point probe metodu kullanılarak özdirenç ölçümleri gerçekleştirilmiştir. Katkısız perovskit ince filmleri ve %10 Cu katkılı perovskit ince filmlerin özdirençlerinin artan voltajla birlikte asimptotik olarak azaldığı belirlenmiştir.

References

  • Barrows, A. T., Pearson, A. J., Kwak, C. K., Dunbar, A. D. F., Buckley, A. R., Lidzey, D. G. (2014). Efficient Planar Heterojunction Mixed-Halide Perovskite Solar Cells Deposited via Spray-Deposition, Energy Environ. Sci. 7, 2944–2950. doi:10.1039/C4EE01546K.
  • Basumatary, P., Agarwal, P. (2020). Photocurrent transient measurements in MAPbI3 thin flms, Journal of Materials Science: Materials in Electronics, 31, 10047–10054. doi:10.1007/s10854-020-03549-7.
  • Brenner, T.M., Rakita, Y., Orr, Y., Klein, E., Feldman, I., Elbaum, M., Cahen, D., Hodes, G. (2016). Conversion of single crystalline PbI2 to CH3NH3PbI3: Structural relations and transformation dynamics, Chem. Mater., 28, 6501–6510. doi:10.1021/acs.chemmater.6b01747.
  • Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M. (2013), Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 316–320. doi:10.1038/nature12340.
  • Chen, C. -W., Kang, H. -W., Hsiao, S. -Y., Yang, P. -F., Chiang, K. -M., Lin, H. -W. (2014). Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition, Adv. Mater. 26, 6647–6652. doi: 10.1002/adma.201402461.
  • Chen, H. (2017). Two-Step Sequential Deposition of Organometal Halide Perovskite for Photovoltaic Application, Adv. Funct. Mater., 27, 1–19. doi: 10.1002/adfm.201605654.
  • Chen, H., Wei, Z., Zheng, X., Yang, S. (2015). A scalable electrodeposition route to the lowcost, versatile and controllable fabrication of perovskite solar cells, Nano Energy, 15, 216–226. doi:10.1016/j.nanoen.2015.04.025.
  • Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H. -S., Wang, H. -H., Liu, Y., Li, G., Yang, Y. (2014). Planar Heterojunction Perovskite Solar Cells Via Vapor-Assisted Solution Process, J. Am. Chem. Soc. 136, 622–625. doi:10.1021/ja411509g.
  • Chiang, C.-H., Tseng, Z.-L., Wu, C.-G. (2014). Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process, J. Mater. Chem. A, 2, 15897–15903. doi:10.1039/c4ta03674c.
  • Choi, H., Jeong, J., Kim, H., Kim, S., Walker, B., Kim, G., Kim, J.Y. (2014). Cesium doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy, 7 80-85. doi:10.1016/j.nanoen.2014.04.017.
  • Costa, J.C.S., Azevedo, J., Araujo, J.P., Santos, L.M.N.B.F., Mendes, A. (2018). High purity and crystalline thin films of methylammonium lead iodide perovskites by a vapor deposition approach, Thin Solid Films, 664, 12-18. doi:10.1016/j.tsf.2018.08.026.
  • Docampo, P., Hanusch, F. C., Stranks, S. D., Döblinger, M., Feckl, J. M., Ehrensperger, M., Minar, N. K., Johnston, M. B., Snaith, H. J., Bein, T. (2014). Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells, Adv. Energy Mater. 4, 1400355. doi: 10.1002/aenm.201400355.
  • Filho, J. M. C. S. and Marques, F. C. (2018), Growth of Perovskite Nanorods from PbS Quantum Dots, Energy and Sustainability, 3, 1843-1848. doi: 10.1557/adv.2018.188.
  • Goldschmidt, V. M. (1926). Die Gesetze Der Krystallochemie, Die Naturwissenschaften, 14 477–485. doi: 0.1007/BF01507527.
  • Guo, X., McCleese, C., Kolodziej, C., Samia, A.C., Zhao, Y., Burda, C. (2016). Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite, Dalton Trans., 45, 3806–3813. doi: 10.1039/c5dt04420k.
  • Gustav, R. (1840). Beschreibung Einiger Neuen Mineralien Des Urals, Annalen Der Physik, 126(8) 652–56, doi: 10.1002/andp.18401260807.
  • Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3, 4088–4093. doi: 10.1039/c1nr10867k.
  • Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S. (2014). Seok, S., Solvent Engineering for High-Performance Inorganic-Organic Hybrid Perovskite Solar Cells, Nat. Mater. 13, 897–903. doı: 10.1038/nmat4014.
  • Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Il Seol, S. (2014). Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater. 13 897–903. doi:10.1038/nmat4014.
  • Leyden, M. R., Ono, L. K., Raga, S. R., Kato, Y., Wang, S., Qi, Y. (2014). High Performance Perovskite Solar Cells by Hybrid Chemical Vapor Deposition, J. Mater. Chem. A 2, 18742-18745. doi:10.1039/c4ta04385e.
  • Liu, J., Gao, C., He, X.L., Ye, Q.Y., Ouyang, L.Q., Zhuang, D.M., Liao, C., Mei, J., Lau, W.M. (2015). Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell, Acs Appl. Mater. Inter., 7, 24008–24015. doi: 10.1021/acsami.5b06780.
  • Perez, M., Peled, S. S., Templeman, T., Osherov, A., Bulovic, V., Katz, E. A., Golan, Y. (2020). A Two-Step All Solution Process for Conversion of Lead Sulfide to Methylammonium Lead Iodide Perovskite Thin Films, Thin Solid Films, 714, 138367. doi: 10.1016/j.tsf.2020.138367.
  • Sun, X., Zhang, C.F., Chang, J.J., Yang, H.F., Xi, H., Lu, G., Chen, D.Z., Lin, Z.H., Lu, X.L., Zhang, J.C., Hao, Y. (2016). Mixed-solvent-vapor annealing of perovskite for photovoltaic device efficiency enhancement, Nano Energy, 28, 417–425. doi: 10.1016/j.nanoen.2016.08.055.
  • Xiao, M.D., Huang, F.Z., Huang, W.C., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y.B., Spiccia, L. (2014). A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells, Angew Chem. Int. Edit. 53, 9898–9903. doi: 10.1002/anie.201405334.
  • Zhou, Y., Yang, M., Vasiliev, A.L., Garces, H.F., Zhao, Y., Wang, D., Pang, S., Zhu, K., Padture, N.P. (2015). Growth control of compact CH3NH3PbI3 thin films via enhanced solid-state precursor reaction for efficient planar perovskite solar cells, J. Mater. Chem. A, 3, 9249– 9256. doi:10.1039/c4ta07036d.
  • Zhou, Y.Y., Yang, M.J., Wu, W.W., Vasiliev, A.L., Zhu, K., Padture, N.P. (2015). Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells, J. Mater. Chem. A, 3, 8178–8184. doi: 10.1039/c5ta00477b.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Satiye Korkmaz 0000-0002-7592-3366

Publication Date July 31, 2022
Submission Date December 29, 2021
Published in Issue Year 2022 Volume: 14 Issue: 2

Cite

APA Korkmaz, S. (2022). The Effect Of Cu Doping On The Structural Properties And Electrical Resistivity Of MAPbI3 Perovskite Thin Films. International Journal of Engineering Research and Development, 14(2), 544-551. https://doi.org/10.29137/umagd.1050430

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.