Araştırma Makalesi
BibTex RIS Kaynak Göster

SOLID MODEL CONVERSION OF CT DATA IN RECONSTRUCTION OF BONE DEFORMITIES

Yıl 2019, Cilt: 2 Sayı: 1, 44 - 58, 12.07.2019

Öz

Kaynakça

  • [1] Pandian A., Belavek C., (2016) A review of recent trends and challenges in 3D printing, ASEE North Cent. Sect. Conf.; 1–17.
  • [2] Sachs EM., Haggerty JS., Cima MJ., Williams PA., (1989) Three-dimensional printing techniques, US patent; (5):204,055
  • [3] Hesuani YD., Pereira FDAS., Parfenov V., Koudan E., Mitryashkin A., Replyanski N., Kasyanov V., Knyazeva A., BulanovaE., Mironov V., (2016) Design, 3D Print. Addit. Manuf., Implementation of Novel Multifunctional 3D Bioprinter; 64–68.
  • [4] Peltola SM., Melchels FPW., Grijpma DW., Kellomäki M., (2008) A review of rapid prototyping techniques for tissue engineering purposes, Ann. Med.; 3(1):268–280.
  • [5] Schubert C., van Langeveld MC., Donoso LA., (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol;98(2):159–161.
  • [6] Lipson H., (2013) New world of 3-D printing offers completely new ways of thinking: Q & A with author, engineer, and 3-D printing expert Hod Lipson. IEEE Pulse;4(6):12–14.
  • [7] Ventola CL., (2013) WHO: The WHO Recommended Classification of Pesticides by Hazard; 39:(10)704–711.
  • [8] Munaz A., Vadivelu RK., John JS., Barton M., Kamble H., Nguyen NT., (2016) Three-dimensional printing of biological matters, J. Sci. Adv. Mater. Devices; 1(1):1–17
  • [9] Donderwinkel I., Van Hest JCM., Cameron NR., (2017) Bio-inks for 3D bioprinting: Recent advances and future prospects, Polym. Chem; 8(31):4451–4471.
  • [10] Kolesky DB., Truby RL., Gladman AS., Busbee TA., Homan KA., (2014) Lewis JA., 3D Bioprinting of Vascularized, Heterogeneous Cell‐Laden Tissue Constructs, Cell‐Laden Tissue Constructs Advanced Materials Wiley Online Library; 26(19): 3124-3130
  • [11] Özsoy, K., & Kayacan, M. C. (2018). ERGİYİK BİRİKTİRME YÖNTEMİYLE HAFİFLETİLMİŞ KİŞİYE ÖZEL KAFATASI İMPLANTIN HIZLI PROTOTİPLENMESİ. Uluborlu Mesleki Bilimler Dergisi, 1(1), 1- 11.
  • [12] Park SH, Jung CS., Min BH., (2016) Tissue Eng. Regener. Med.; (13)622–635.
  • [13] Serra T., Mateos-Timoneda MA., Planell JA., Navarro M., (2013) 3D printed PLA-based scaffolds: A versatile tool in regenerative medicine, Organogenesis;9(4):239–244.
  • [14] Farjam R, Tyagi N, Deasy J, Hunt MA, (2018), Dosimetric evaluation of an atlas-based synthetic CT generation approach for MR-only radiotherapy of pelvis anatomy, Journal of Applied Clinical Medical Physics, c. 20.
  • [15] Minocchieri S, Burren JM., Bachmann MA., (2008) Development of the premature infant nose throat-model an upper airway replica of a premature neonate for the study of aerosol delivery, PrINT-Model,, Pediatr. Res.; 64(2):141–146.
  • [16] Tam MD., Laycock SD., Jayne D., Babar J., Noble B., (2013) 3-D printouts of the tracheobronchial tree generated from CT images as an aid to management in a case of tracheobronchial chondromalacia caused by relapsing polychondritis, J. Radiol. Case Rep.; 7(8):34–43.
  • [17] Gross BC., Erkal JL., Lockwood SY., Chen C., Spence DM., (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,, Analytical. Chem.; 86(7):3240–3253.
  • [18] Cheng GZ., Estepar RSJ., Folch E., Onieva J., Gangadharan S., Majid A., (2016) Three-dimensional printing and 3D slicer powerful tools in understanding and treating structural lung disease, Chest; 149(5):1136–1142.
  • [19] Wang X., Qiang A., Xiaohong T., Jun F., Yujun W., Weijian H., Hao T., Shuling B., (2016) 3D bioprinting technologies for hard tissue and organ engineering, Materials ,Basel; 9(10):1–23.
  • [20] Pinter C., Lasso A., Wang A., Jaffray D., Fichtinger G., (2012) SlicerRT: Radiation therapy research toolkit for 3D Slicer, Med. Phys.; 39(10):6332–6338.
  • [21] Huang C., Zhou L., Wang X., (2007) Region-based shape representation and similarity measure suitable for binary image retrieval, Int. Conf. Signal Process. Proceedings, ICSP; (2)165–166.
  • [22] Pandey PM., Reddy NV., Dhande SG., (2006) Virtual hybrid-FDM system to enhance surface finish, Virtual Phys. Prototyp.; 1(2):101–116.
  • [23] Melchels FPW., Feijen J., Grijpma DW., (2010) A review on stereolithography and its applications in biomedical engineering, Biomaterials; 31(24):6121–6130.
  • [24] Content of this site is, 3D Slicer contributors, (2019) unless otherwise noted- Contact webmaster@bwh.harvard.edu, [BioSlicer] for questions about the use of this site's content, https://www.slicer.org.
  • [25] Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Robin JCF., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S., Miller JV., Pieper S., Kikinis R., (2012) 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network, NIH-Pa.; 9(30):1323–1341.
  • [26] Velazquez E.R, Parmar C., Jermoumi M., Mak RH., van Baardwijk A., Fennessy FM., Lewis JH., De Ruysscher D., Kikinis R., Lambin P., Aerts HJ., (2013) Volumetric CT-based segmentation of NSCLC using 3D-Slicer, Sci. Rep.; (3) 3529.
  • [27] Fatih G., Mesud K., (2009) Sayısal Görüntü İşleme ile Geometrik Şekil ve Rotasyon Tespiti, 13.Elektrik, Elektronik, Bilgisayar, Biyomedikal Mühendisliği Ulusal Kongresi, Ankara.
  • [28] Eisenmenger LB., Wiggins EH., Fults DW., Huo EJ., (2017) Application of 3-Dimensional Printing in a Case of Osteogenesis Imperfecta for Patient Education, Anatomic Understanding, Preoperative Planning, and Intraoperative Evaluation, World Neurosurg.; 107(7):1049-1049.
  • [29] Katja H., Shengmao L, Liesbeth T, Sandra V., Linxia G., Aleksandr O., (2016) Bioink properties before, during and after 3D bioprinting, Biofabrication; 8(3) 32002
  • [30] Winder J., Bibb R., (2005) Medical rapid prototyping technologies: State of the art and current limitations for application in oral and maxillofacial surgery, J. Oral Maxillofac. Surg; 63(7)1006–1015.
  • [31] Barrett JF., Keat N., (2004) Artifacts in CT: Recog-nition and Avoidance Learnıng Objectıves For Test 5 Cme Feature, RadioGraphics;(24):1679–1691, 2004.
  • [32] Kang HW., Lee SJ., Ko IK., Kengla C., Yoo JJ., Atala A., (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity, Nat. Biotechnol.; 34(3)312–319.
  • [33] He Y., Yang F., Zhao H., Gao Q., Xia B., Fu J., (2016) Research on the printability of hydrogels in 3D bioprinting, Sci. Rep.; (6):1–13.
  • [34] Wang X., Ao Q., Tian X., Fan J., Tong H., Hou W., Bai S., (2017) Gelatin-based hydrogels for organ 3D bioprinting, Polymers, Basel; 9(9):401.

KEMİK DEFORMİTELERİNİN REKONSTRÜKSİYONUNDA CT VERİLERİNİN KATI MODELE DÖNÜŞTÜRÜLMESİ

Yıl 2019, Cilt: 2 Sayı: 1, 44 - 58, 12.07.2019

Öz

Konjenital ve ya
edinsel sebeplere bağlı yüz bölgesini içeren ve cerrahi gerektiren deformiteler
yumuşak doku veya kemik kaynaklı olabilir. Özellikle kemiksel deformitelerin
rekonstrüksiyonlarında cerrahi planlama büyük önem arz etmekte, osteotomi
hatlarının seviyeleri ve kemik hareketlerinin yön ve hareket miktarlarının ne
kadar olacağı önceden hesaplanmalıdır. 
Hastaların preoperatif değerlendirilmesinde çekilen CT verilerinin
kullanıldığı 3 boyutlu modelleme sistemleri ile yapılan planlamalarla yapılan
cerrahi işlemlerin sonuçları oldukça yüz güldürücü olmaktadır. Ayrıca ameliyat
öncesi model üzerinde yapılan planlamalar cerrahi işlemi uygulayacak ekibin
işlemleri daha kısa sürede ve efektif yapmasına olanak sağlamakta, cerrahi
işlem ve dolayısıyla hastanın aldığı anestezi süresi kısalmaktadır.

 

Bu çalışmada uzun süren rekonstrüktif operasyonlar öncesi CT
verileri üzerinde 3D Slicer yazılımı kullanılarak görüntü işleme ve görüntü
iyileştirme yöntemleri uygulayarak hastaya ait yüz kemiklerinin yapısı
temizlenerek son veriler üzerinden 3D katı model çıkartılmaktadır. Katı modelin
verisi 3D yazıcı teknolojisi kullanılarak 1/1 ölçekte somut bir katı modele
dönüştürülmektedir. Elde edilen katı model üzerinde ameliyat öncesi cerrahi
ekip tarafından planlamalar yapılmış ve cerrahi işlem en optimal şekilde
tamamlanarak cerrahi operasyonun süreside azaltılmaktadır.

 









3D yazıcı teknolojisi kullanılarak yapılan cerrahi
işlemlerin; optimal sonuçlar elde edilmesi, ameliyat süresinin kısalması,
hastaya ait komplikasyonların azalması ve ameliyat sonrası hasta memnuniyetinin
artması açısından oldukça büyük önem taşıdığı görülmektedir.

Kaynakça

  • [1] Pandian A., Belavek C., (2016) A review of recent trends and challenges in 3D printing, ASEE North Cent. Sect. Conf.; 1–17.
  • [2] Sachs EM., Haggerty JS., Cima MJ., Williams PA., (1989) Three-dimensional printing techniques, US patent; (5):204,055
  • [3] Hesuani YD., Pereira FDAS., Parfenov V., Koudan E., Mitryashkin A., Replyanski N., Kasyanov V., Knyazeva A., BulanovaE., Mironov V., (2016) Design, 3D Print. Addit. Manuf., Implementation of Novel Multifunctional 3D Bioprinter; 64–68.
  • [4] Peltola SM., Melchels FPW., Grijpma DW., Kellomäki M., (2008) A review of rapid prototyping techniques for tissue engineering purposes, Ann. Med.; 3(1):268–280.
  • [5] Schubert C., van Langeveld MC., Donoso LA., (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol;98(2):159–161.
  • [6] Lipson H., (2013) New world of 3-D printing offers completely new ways of thinking: Q & A with author, engineer, and 3-D printing expert Hod Lipson. IEEE Pulse;4(6):12–14.
  • [7] Ventola CL., (2013) WHO: The WHO Recommended Classification of Pesticides by Hazard; 39:(10)704–711.
  • [8] Munaz A., Vadivelu RK., John JS., Barton M., Kamble H., Nguyen NT., (2016) Three-dimensional printing of biological matters, J. Sci. Adv. Mater. Devices; 1(1):1–17
  • [9] Donderwinkel I., Van Hest JCM., Cameron NR., (2017) Bio-inks for 3D bioprinting: Recent advances and future prospects, Polym. Chem; 8(31):4451–4471.
  • [10] Kolesky DB., Truby RL., Gladman AS., Busbee TA., Homan KA., (2014) Lewis JA., 3D Bioprinting of Vascularized, Heterogeneous Cell‐Laden Tissue Constructs, Cell‐Laden Tissue Constructs Advanced Materials Wiley Online Library; 26(19): 3124-3130
  • [11] Özsoy, K., & Kayacan, M. C. (2018). ERGİYİK BİRİKTİRME YÖNTEMİYLE HAFİFLETİLMİŞ KİŞİYE ÖZEL KAFATASI İMPLANTIN HIZLI PROTOTİPLENMESİ. Uluborlu Mesleki Bilimler Dergisi, 1(1), 1- 11.
  • [12] Park SH, Jung CS., Min BH., (2016) Tissue Eng. Regener. Med.; (13)622–635.
  • [13] Serra T., Mateos-Timoneda MA., Planell JA., Navarro M., (2013) 3D printed PLA-based scaffolds: A versatile tool in regenerative medicine, Organogenesis;9(4):239–244.
  • [14] Farjam R, Tyagi N, Deasy J, Hunt MA, (2018), Dosimetric evaluation of an atlas-based synthetic CT generation approach for MR-only radiotherapy of pelvis anatomy, Journal of Applied Clinical Medical Physics, c. 20.
  • [15] Minocchieri S, Burren JM., Bachmann MA., (2008) Development of the premature infant nose throat-model an upper airway replica of a premature neonate for the study of aerosol delivery, PrINT-Model,, Pediatr. Res.; 64(2):141–146.
  • [16] Tam MD., Laycock SD., Jayne D., Babar J., Noble B., (2013) 3-D printouts of the tracheobronchial tree generated from CT images as an aid to management in a case of tracheobronchial chondromalacia caused by relapsing polychondritis, J. Radiol. Case Rep.; 7(8):34–43.
  • [17] Gross BC., Erkal JL., Lockwood SY., Chen C., Spence DM., (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences,, Analytical. Chem.; 86(7):3240–3253.
  • [18] Cheng GZ., Estepar RSJ., Folch E., Onieva J., Gangadharan S., Majid A., (2016) Three-dimensional printing and 3D slicer powerful tools in understanding and treating structural lung disease, Chest; 149(5):1136–1142.
  • [19] Wang X., Qiang A., Xiaohong T., Jun F., Yujun W., Weijian H., Hao T., Shuling B., (2016) 3D bioprinting technologies for hard tissue and organ engineering, Materials ,Basel; 9(10):1–23.
  • [20] Pinter C., Lasso A., Wang A., Jaffray D., Fichtinger G., (2012) SlicerRT: Radiation therapy research toolkit for 3D Slicer, Med. Phys.; 39(10):6332–6338.
  • [21] Huang C., Zhou L., Wang X., (2007) Region-based shape representation and similarity measure suitable for binary image retrieval, Int. Conf. Signal Process. Proceedings, ICSP; (2)165–166.
  • [22] Pandey PM., Reddy NV., Dhande SG., (2006) Virtual hybrid-FDM system to enhance surface finish, Virtual Phys. Prototyp.; 1(2):101–116.
  • [23] Melchels FPW., Feijen J., Grijpma DW., (2010) A review on stereolithography and its applications in biomedical engineering, Biomaterials; 31(24):6121–6130.
  • [24] Content of this site is, 3D Slicer contributors, (2019) unless otherwise noted- Contact webmaster@bwh.harvard.edu, [BioSlicer] for questions about the use of this site's content, https://www.slicer.org.
  • [25] Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Robin JCF., Pujol S., Bauer C., Jennings D., Fennessy F., Sonka M., Buatti J., Aylward S., Miller JV., Pieper S., Kikinis R., (2012) 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network, NIH-Pa.; 9(30):1323–1341.
  • [26] Velazquez E.R, Parmar C., Jermoumi M., Mak RH., van Baardwijk A., Fennessy FM., Lewis JH., De Ruysscher D., Kikinis R., Lambin P., Aerts HJ., (2013) Volumetric CT-based segmentation of NSCLC using 3D-Slicer, Sci. Rep.; (3) 3529.
  • [27] Fatih G., Mesud K., (2009) Sayısal Görüntü İşleme ile Geometrik Şekil ve Rotasyon Tespiti, 13.Elektrik, Elektronik, Bilgisayar, Biyomedikal Mühendisliği Ulusal Kongresi, Ankara.
  • [28] Eisenmenger LB., Wiggins EH., Fults DW., Huo EJ., (2017) Application of 3-Dimensional Printing in a Case of Osteogenesis Imperfecta for Patient Education, Anatomic Understanding, Preoperative Planning, and Intraoperative Evaluation, World Neurosurg.; 107(7):1049-1049.
  • [29] Katja H., Shengmao L, Liesbeth T, Sandra V., Linxia G., Aleksandr O., (2016) Bioink properties before, during and after 3D bioprinting, Biofabrication; 8(3) 32002
  • [30] Winder J., Bibb R., (2005) Medical rapid prototyping technologies: State of the art and current limitations for application in oral and maxillofacial surgery, J. Oral Maxillofac. Surg; 63(7)1006–1015.
  • [31] Barrett JF., Keat N., (2004) Artifacts in CT: Recog-nition and Avoidance Learnıng Objectıves For Test 5 Cme Feature, RadioGraphics;(24):1679–1691, 2004.
  • [32] Kang HW., Lee SJ., Ko IK., Kengla C., Yoo JJ., Atala A., (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity, Nat. Biotechnol.; 34(3)312–319.
  • [33] He Y., Yang F., Zhao H., Gao Q., Xia B., Fu J., (2016) Research on the printability of hydrogels in 3D bioprinting, Sci. Rep.; (6):1–13.
  • [34] Wang X., Ao Q., Tian X., Fan J., Tong H., Hou W., Bai S., (2017) Gelatin-based hydrogels for organ 3D bioprinting, Polymers, Basel; 9(9):401.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Niyazi Uğur Özcan 0000-0003-4950-6208

Yayımlanma Tarihi 12 Temmuz 2019
Kabul Tarihi 5 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Özcan, N. U. (2019). KEMİK DEFORMİTELERİNİN REKONSTRÜKSİYONUNDA CT VERİLERİNİN KATI MODELE DÖNÜŞTÜRÜLMESİ. Uluborlu Mesleki Bilimler Dergisi, 2(1), 44-58.
Creative Commons Lisansı
Isparta Uygulamalı Bilimler Üniversitesi Uluborlu Mesleki Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.