Araştırma Makalesi
BibTex RIS Kaynak Göster

PARAMETERS USED IN METAL BINDER JETTING ADDITIVE MANUFACTURING

Yıl 2020, Cilt: 3 Sayı: 1, 19 - 27, 31.12.2020

Öz

Nowadays, with the development of technology, alternative ways have been sought for functional parts that cannot be manufactured by traditional methods. One of these unconventional manufacturing methods is Additive Manufacturing. Additive Manufacturing does not work by removing the part to be manufactured from a raw material or by mass shaping, unlike traditional methods. It is a system that manufactures cross-sections of powder or melt raw material in layers according to a suitably prepared design. It can be divided into sub-types according to the type of material, the way the layers are combined and the unifying energy source, and it can be defined as the production method in which the part is manufactured as desired.

As one of the Additive Manufacturing methods, Metal Binder Jetting is a recently emerged and still developing Additive Manufacturing method. Due to the fact that it is under development, a clear binder type, ratio, sintering process and atmosphere could not be determined. In this article, powder raw materials (raw material type, powder size), sintering processes (sintering temperature, time, atmosphere) and the ratio of binders used with raw material metal powder in various studies are mentioned.

Kaynakça

  • [1] YALÇIN, B., & Ergene, B. (2017). ENDÜSTRİDE YENİ EĞİLİM OLAN 3-B EKLEMELİ İMALAT YÖNTEMİ VE METALURJİSİ. SDU International Journal of Technological Science, 9(3).
  • [2] Duman, B., & Kayacan, M. C. SEÇMELİ LAZER SİNTERLEME TEZGÂHI İÇİN İMALAT YAZILIMI GELİŞTİRİLMESİ. Uluslararası Teknolojik Bilimler Dergisi, 8(3), 27-45.
  • [3] Exone., 2019. Erişim Tarihi: 10.10.2019 https://www.exone.com/
  • [4] Mouritz, A. P. (2012). Introduction to aerospace materials. Elsevier.
  • [5] Yin, X., Travitzky, N., & Greil, P. (2007). Near‐Net‐Shape Fabrication of Ti3AlC2‐Based Composites. International journal of applied ceramic technology, 4(2), 184-190.
  • [6] Myers, K., Juhasz, M., Cortes, P., & Conner, B. (2015). Mechanical modeling based on numerical homogenization of an Al2O3/Al composite manufactured via binder jet printing. Computational Materials Science, 108, 128-135.
  • [7] Tuffile, C. D., Lemke, H., & Mack, P. E. (2016). U.S. Patent Application No. 15/014,637.
  • [8] Desktop Metal, 2019. Erişim Tarihi: 1.10.2019 https://www.desktopmetal.com/
  • [9] EOS., 2019. Erişim Tarihi: 10.10.2019 https://www.eos.info/en
  • [10] SLM Solutions, 2019. Erişim Tarihi: 10.10.2019 https://slm-solutions.com/
  • [11] Digital Metal, 2019. Erişim Tarihi: 10.10.2019 https://digitalmetal.tech/
  • [12] XJet, 2019. Erişim Tarihi: 10.10.2019 https://xjet3d.com
  • [13] Arcam, 2019. Erişim Tarihi:10.10.2019. http://www.arcam.com/
  • [14] Hrabe, N., Gnäupel-Herold, T., & Quinn, T. (2017). Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. International Journal of Fatigue, 94, 202-210.
  • [15] Lorenz, A.M., Sachs, E.M., Allen, S.M., 2004. Techniques For Infiltration of a Powder Metal Skeleton by a Similar Alloy With Melting Point Depressed, United States Patent, No: US 6,719,948 B2 dated 13.04.2004.
  • [16] Miyanaji, H., Yang, L., 2016. Equilibrium Saturation in Binder Jetting 3D Printing Process: Theoretical Model vs. Experimental Observations.
  • [17] Enneti, R.K., Prough, K.C., Wolfe, T.A., Klein, A., Studley, N., Trasorras, J.L., 2018. Sintering of WC-12%Co Processed by Binder Jet 3D Printing (BJ3DP) Technology, International Journal of Refractory Metals & Hard Materials, 71, 28–35.
  • [18] Do, T., Kwon, P., & Shin, C. S. (2017). Process development toward full-density stainless steel parts with binder jetting printing. International Journal of Machine Tools and Manufacture, 121, 50-60.
  • [19] Vangapally, S., Agarwal, K., Sheldon, A., & Cai, S. (2017). Effect of Lattice Design and Process Parameters on Dimensional and Mechanical Properties of Binder Jet Additively Manufactured Stainless Steel 316 for Bone Scaffolds. Procedia Manufacturing, 10, 750-759.
  • [20] Tang, Y., Zhou, Y., Hoff, T., Garon, M., & Zhao, Y. F. (2016). Elastic modulus of 316 stainless steel lattice structure fabricated via binder jetting process. Materials Science and Technology, 32(7), 648-656.
  • [21] FRYKHOLM, R., TAKEDA, Y., ANDERSSON, B. G., & CARLSTRÖM, R. (2016). Solid state sintered 3-D printing component by using inkjet (binder) method. Journal of the Japan Society of Powder and Powder Metallurgy, 63(7), 421-426.
  • [22] Johnston, S., Frame, D., Anderson, R., & Storti, D. Strain Analysis of Initial Stage Sintering of 316L SS Three Dimensionally Printed (3DP™) Components.
  • [23] Utela, B., Storti, D., Anderson, R., Ganter, M., 2008. A Review of Process Development Steps for New Material Systems in Three Dimensional Printing (3DP), Journal of Manufacturing Processes 10, 96-104.
  • [24] Mostafaei, A., Toman, J., Stevens, E. L., Hughes, E. T., Krimer, Y. L., & Chmielus, M. (2017). Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas-and water-atomized alloy 625 powders. Acta Materialia, 124, 280-289.
  • [25] Bai, Y., Williams, C.B., 2015. An Exploration of Binder Jetting of Copper. Rapid Prototyping Journal, 21(2), 177-185.
  • [26] Cordero, Z. C., Siddel, D. H., Peter, W. H., & Elliott, A. M. (2017). Strengthening of ferrous binder jet 3D printed components through bronze infiltration. Additive Manufacturing, 15, 87-92.
  • [27] Doyle, M., Agarwal, K., Sealy, W., & Schull, K. (2015). Effect of layer thickness and orientation on mechanical behavior of binder jet stainless steel 420+ bronze parts. Procedia Manufacturing, 1, 251-262.
  • [28] Turker, M., Godlinski, D., & Petzoldt, F. (2008). Effect of production parameters on the properties of IN 718 superalloy by three-dimensional printing. Materials characterization, 59(12), 1728-1735.
  • [29] Gülsoy, H. Ö. (2008). Production of injection moulded 316L stainless steels reinforced with TiC (N) particles. Materials Science and Technology, 24(12), 1484-1491.
  • [30] Do, T., Bauder, T. J., Suen, H., Rego, K., Yeom, J., & Kwon, P. (2018, June). Additively Manufactured Full-Density Stainless Steel 316L with Binder Jet Printing. In ASME 2018 13th International Manufacturing Science and Engineering Conference (pp. V001T01A017-V001T01A017). American Society of Mechanical Engineers.
  • [31] Cima, M., Sachs, E., Fan, T., Bredt, J.F., Michaels, S.P., Khanuja, S., Lauder, A., Lee, S.J.J., Brancazio, D., Curodeau, A., Tuerck, H., Three-Dimensionel Printing Techniques, United States Patent, No: 5,387,380 dated 07.02.1995.
  • [32] Sachs E.M., Cima, M.J., Bredt, J.F., Khanuja, S., 2000. Ceramic Mold Finishing, United States Patent, No: 6,109,332 dated 29.08.2000.
  • [33] Bredt, J.F., Clark, S., Gilchrist, G., 2006. Three Dimensional Printing Material System and Method, No: US 7,087,109 B2 dated 08.08.2006.
  • [34] Ren, L., Zhou, X., Song, Z., Zhao, C., Liu, Q., Xue, J., & Li, X. (2017). Process parameter optimization of extrusion-based 3D metal printing utilizing PW–LDPE–SA binder system. Materials, 10(3), 305.
  • [35] Salehi, M., Gupta, M., Maleksaeedi, S., & Sharon, N. M. L. (2018, January). Inkjet based 3D additive manufacturing of metals. Materials Research Forum LLC.
  • [36] Meteyer, S., Xu, X., Perry, N., & Zhao, Y. F. (2014). Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia Cirp, 15, 19-25.
  • [37] Bai, Y., Wagner, G., Williams, C. B., 2015. Effect of bimodal powder mixture on powder packing density and sintered density in binder jetting of metals. In 2015 Annual International Solid Freeform Fabrication Symposium., 62, 758-771.
  • [38] Redwood, B., 2019. Additive Manufacturing Technologies: An Overview. Erişim Tarihi: 10.10.2019. https://www.3dhubs.com/knowledgebase/additive-manufacturing-technologies-overview
  • Kayacan, M. C., DELİKANLI, Y. E., Duman, B., & Özsoy, K. (2018). Ti6Al4v toz alaşımı kullanılarak SLS ile üretilen geçişli (değişken) gözenekli numunelerin mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(1).

BAĞLAYICI PÜSKÜRTMELİ METAL EKLEMELİ İMALATTA KULLANILAN PARAMETRELER

Yıl 2020, Cilt: 3 Sayı: 1, 19 - 27, 31.12.2020

Öz

Günümüzde teknolojinin de gelişmesiyle geleneksel yöntemlerle imal edilemeyen fonksiyonel parçalar için alternatif yollar aranmaya başlanmıştır. Bu geleneksel olmayan imalat yöntemlerinden biri de Eklemeli İmalat’tır. Eklemeli İmalat (Additive Manufacturing), geleneksel yöntemlerin tersine, imal edilecek parçanın daha kaba bir ham maddeden eksilterek ya da kütlesel şekillendirmeyle çalışmaz. Uygun biçimde hazırlanmış bir tasarıma göre toz ya da ergiyik ham maddesinden kesit alanların katmanlar halinde imal eden bir sistemdir. Malzeme cinsine, katmanların birleştirilme biçimine ve birleştirici enerji kaynağına göre alt türlere ayrılarak, istenilen şekilde parçanın imal edildiği üretim yöntemi olarak tanımlanabilmektedir.

Eklemeli İmalat yöntemlerinden biri olan, Bağlayıcı Püskürtmeli Metal Eklemeli İmalat yakın zamanda ortaya çıkmış ve hala gelişmekte olan bir Eklemeli İmalat yöntemidir. Gelişme aşamasında olmasından dolayı net bir bağlayıcı türü, oranı, sinterleme süreci ve ortamı belirlenememiştir. Bu makalede çeşitli çalışmalardaki kullanılan toz hammaddelerden (hammadde türü, toz boyutu), sinterleme süreçlerinden (sinterleme sıcaklığı, süresi, ortamı) ve kullanılan bağlayıcıların hammadde metal tozu ile oranlarından bahsedilmiştir.

Kaynakça

  • [1] YALÇIN, B., & Ergene, B. (2017). ENDÜSTRİDE YENİ EĞİLİM OLAN 3-B EKLEMELİ İMALAT YÖNTEMİ VE METALURJİSİ. SDU International Journal of Technological Science, 9(3).
  • [2] Duman, B., & Kayacan, M. C. SEÇMELİ LAZER SİNTERLEME TEZGÂHI İÇİN İMALAT YAZILIMI GELİŞTİRİLMESİ. Uluslararası Teknolojik Bilimler Dergisi, 8(3), 27-45.
  • [3] Exone., 2019. Erişim Tarihi: 10.10.2019 https://www.exone.com/
  • [4] Mouritz, A. P. (2012). Introduction to aerospace materials. Elsevier.
  • [5] Yin, X., Travitzky, N., & Greil, P. (2007). Near‐Net‐Shape Fabrication of Ti3AlC2‐Based Composites. International journal of applied ceramic technology, 4(2), 184-190.
  • [6] Myers, K., Juhasz, M., Cortes, P., & Conner, B. (2015). Mechanical modeling based on numerical homogenization of an Al2O3/Al composite manufactured via binder jet printing. Computational Materials Science, 108, 128-135.
  • [7] Tuffile, C. D., Lemke, H., & Mack, P. E. (2016). U.S. Patent Application No. 15/014,637.
  • [8] Desktop Metal, 2019. Erişim Tarihi: 1.10.2019 https://www.desktopmetal.com/
  • [9] EOS., 2019. Erişim Tarihi: 10.10.2019 https://www.eos.info/en
  • [10] SLM Solutions, 2019. Erişim Tarihi: 10.10.2019 https://slm-solutions.com/
  • [11] Digital Metal, 2019. Erişim Tarihi: 10.10.2019 https://digitalmetal.tech/
  • [12] XJet, 2019. Erişim Tarihi: 10.10.2019 https://xjet3d.com
  • [13] Arcam, 2019. Erişim Tarihi:10.10.2019. http://www.arcam.com/
  • [14] Hrabe, N., Gnäupel-Herold, T., & Quinn, T. (2017). Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. International Journal of Fatigue, 94, 202-210.
  • [15] Lorenz, A.M., Sachs, E.M., Allen, S.M., 2004. Techniques For Infiltration of a Powder Metal Skeleton by a Similar Alloy With Melting Point Depressed, United States Patent, No: US 6,719,948 B2 dated 13.04.2004.
  • [16] Miyanaji, H., Yang, L., 2016. Equilibrium Saturation in Binder Jetting 3D Printing Process: Theoretical Model vs. Experimental Observations.
  • [17] Enneti, R.K., Prough, K.C., Wolfe, T.A., Klein, A., Studley, N., Trasorras, J.L., 2018. Sintering of WC-12%Co Processed by Binder Jet 3D Printing (BJ3DP) Technology, International Journal of Refractory Metals & Hard Materials, 71, 28–35.
  • [18] Do, T., Kwon, P., & Shin, C. S. (2017). Process development toward full-density stainless steel parts with binder jetting printing. International Journal of Machine Tools and Manufacture, 121, 50-60.
  • [19] Vangapally, S., Agarwal, K., Sheldon, A., & Cai, S. (2017). Effect of Lattice Design and Process Parameters on Dimensional and Mechanical Properties of Binder Jet Additively Manufactured Stainless Steel 316 for Bone Scaffolds. Procedia Manufacturing, 10, 750-759.
  • [20] Tang, Y., Zhou, Y., Hoff, T., Garon, M., & Zhao, Y. F. (2016). Elastic modulus of 316 stainless steel lattice structure fabricated via binder jetting process. Materials Science and Technology, 32(7), 648-656.
  • [21] FRYKHOLM, R., TAKEDA, Y., ANDERSSON, B. G., & CARLSTRÖM, R. (2016). Solid state sintered 3-D printing component by using inkjet (binder) method. Journal of the Japan Society of Powder and Powder Metallurgy, 63(7), 421-426.
  • [22] Johnston, S., Frame, D., Anderson, R., & Storti, D. Strain Analysis of Initial Stage Sintering of 316L SS Three Dimensionally Printed (3DP™) Components.
  • [23] Utela, B., Storti, D., Anderson, R., Ganter, M., 2008. A Review of Process Development Steps for New Material Systems in Three Dimensional Printing (3DP), Journal of Manufacturing Processes 10, 96-104.
  • [24] Mostafaei, A., Toman, J., Stevens, E. L., Hughes, E. T., Krimer, Y. L., & Chmielus, M. (2017). Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas-and water-atomized alloy 625 powders. Acta Materialia, 124, 280-289.
  • [25] Bai, Y., Williams, C.B., 2015. An Exploration of Binder Jetting of Copper. Rapid Prototyping Journal, 21(2), 177-185.
  • [26] Cordero, Z. C., Siddel, D. H., Peter, W. H., & Elliott, A. M. (2017). Strengthening of ferrous binder jet 3D printed components through bronze infiltration. Additive Manufacturing, 15, 87-92.
  • [27] Doyle, M., Agarwal, K., Sealy, W., & Schull, K. (2015). Effect of layer thickness and orientation on mechanical behavior of binder jet stainless steel 420+ bronze parts. Procedia Manufacturing, 1, 251-262.
  • [28] Turker, M., Godlinski, D., & Petzoldt, F. (2008). Effect of production parameters on the properties of IN 718 superalloy by three-dimensional printing. Materials characterization, 59(12), 1728-1735.
  • [29] Gülsoy, H. Ö. (2008). Production of injection moulded 316L stainless steels reinforced with TiC (N) particles. Materials Science and Technology, 24(12), 1484-1491.
  • [30] Do, T., Bauder, T. J., Suen, H., Rego, K., Yeom, J., & Kwon, P. (2018, June). Additively Manufactured Full-Density Stainless Steel 316L with Binder Jet Printing. In ASME 2018 13th International Manufacturing Science and Engineering Conference (pp. V001T01A017-V001T01A017). American Society of Mechanical Engineers.
  • [31] Cima, M., Sachs, E., Fan, T., Bredt, J.F., Michaels, S.P., Khanuja, S., Lauder, A., Lee, S.J.J., Brancazio, D., Curodeau, A., Tuerck, H., Three-Dimensionel Printing Techniques, United States Patent, No: 5,387,380 dated 07.02.1995.
  • [32] Sachs E.M., Cima, M.J., Bredt, J.F., Khanuja, S., 2000. Ceramic Mold Finishing, United States Patent, No: 6,109,332 dated 29.08.2000.
  • [33] Bredt, J.F., Clark, S., Gilchrist, G., 2006. Three Dimensional Printing Material System and Method, No: US 7,087,109 B2 dated 08.08.2006.
  • [34] Ren, L., Zhou, X., Song, Z., Zhao, C., Liu, Q., Xue, J., & Li, X. (2017). Process parameter optimization of extrusion-based 3D metal printing utilizing PW–LDPE–SA binder system. Materials, 10(3), 305.
  • [35] Salehi, M., Gupta, M., Maleksaeedi, S., & Sharon, N. M. L. (2018, January). Inkjet based 3D additive manufacturing of metals. Materials Research Forum LLC.
  • [36] Meteyer, S., Xu, X., Perry, N., & Zhao, Y. F. (2014). Energy and material flow analysis of binder-jetting additive manufacturing processes. Procedia Cirp, 15, 19-25.
  • [37] Bai, Y., Wagner, G., Williams, C. B., 2015. Effect of bimodal powder mixture on powder packing density and sintered density in binder jetting of metals. In 2015 Annual International Solid Freeform Fabrication Symposium., 62, 758-771.
  • [38] Redwood, B., 2019. Additive Manufacturing Technologies: An Overview. Erişim Tarihi: 10.10.2019. https://www.3dhubs.com/knowledgebase/additive-manufacturing-technologies-overview
  • Kayacan, M. C., DELİKANLI, Y. E., Duman, B., & Özsoy, K. (2018). Ti6Al4v toz alaşımı kullanılarak SLS ile üretilen geçişli (değişken) gözenekli numunelerin mekanik özelliklerinin incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(1).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mert Gürgen 0000-0002-0838-6564

Cengiz Kayacan 0000-0003-0993-243X

Yayımlanma Tarihi 31 Aralık 2020
Kabul Tarihi 15 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Gürgen, M., & Kayacan, C. (2020). BAĞLAYICI PÜSKÜRTMELİ METAL EKLEMELİ İMALATTA KULLANILAN PARAMETRELER. Uluborlu Mesleki Bilimler Dergisi, 3(1), 19-27.
Creative Commons Lisansı
Isparta Uygulamalı Bilimler Üniversitesi Uluborlu Mesleki Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.