METAL BAĞLAYICI PÜSKÜRTMELİ EKLEMELİ İMALAT MAKİNE TASARIMI VE İMALATI
Yıl 2022,
Cilt: 5 Sayı: 1, 45 - 53, 06.07.2022
Yusuf Sacid Bardakçı
,
Cengiz Kayacan
,
Mert Gürgen
Öz
Teknolojinin ilerlemesi ile tüm dünyada başta imalat sektörü olmak üzere birçok alanda yeni gelişmeler yaşanmaktadır. Bu gelişmeler arasında son yıllarda üzerine birçok araştırmaların yapıldığı katman katman parça imalatı yapan Eklemeli İmalat (Eİ) yöntemi de yer almaktadır. Eİ bu çerçevede parça tasarımı ve imalatı için birçok çeşitli teknolojiler sunar. Bağlayıcı püskürtme yöntemi de bu teknolojilerden biridir. Bu alan üzerinde malzeme çalışmasından cihaz imalatına kadar birçok farklı çalışmalar söz konusudur. Bağlayıcı püskürtme yöntemi ile metal parça imalatı yapan bir cihaz ülkemizde neredeyse bulunmamaktadır ve yurtdışı maliyetleri ise oldukça yüksektir. Bu çalışma kapsamında bu sorunlar göz önüne alınarak bu yöntemle imalat yapan bir Eİ cihazının tasarımı ve imalatı yapıldı.
Yapılan bu çalışmada mürekkep püskürtmeli yazıcılardan ilham alınarak bağlaycı püskürtme yöntemi ile çalışan bir Eİ cihazının tasarımı ve prototip imalatı yapılmışır. Bu kapsamda ilk olarak mürekkep püskürtmeli yazıcıların sisteme nasıl entegre edilebileceği, sistemin tasarımı ve imalat aşamaları göz önünde bulundurularak tasarlandı. Daha sonrasında imalat tablası, imalat zarfı, toz serme sistemi ve cihazın ana tasarımı gerçekleştirildi. Tasarım kriterleri göz önünde bulundurularak bağlayıcı püskürtmeli metal Eİ cihazının imalatı yapıldı. Son olarak da Arduino tabanlı sürücüler ile yazılım ve kontrol sistemleri çalıştırılarak cihazın imalatı tamamlandı.
Destekleyen Kurum
Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi
Proje Numarası
FYL-2018-6720
Teşekkür
Bu çalışma, Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2018-6720 proje numarası ile finansal olarak desteklenmiştir.
Kaynakça
- [1] Philbeck, T., and Davis, N. (2018). “The fourth industrial revolution”. Journal of International Affairs, 72(1), 17-22.
- [2] Lemu, H. G. (2016/11). Beyond Rapid Prototyping: Study of prospects and challenges of 3D printing in functional part fabrication, : 138-143.
- [3] Petrick, I. J. and Simpson, T. W. (2013). 3D Printing Disrupts Manufacturing: How Economies of One Create New Rules of Competition, Research technology management 56 : 12-16.
- [4] Thompson, M. K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R. I.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B. and Martina, F. (2016). Design for Additive
- [5] ASTM F2792-12a, 2012. Standard Terminology for Additive Manufacturing Technologies, ASTM, Philadelphia.
- [6] Utela, B.R., Storti, D., Anderson, R.L., and Ganter, M., (2010). “Development process for custom three-dimensional printing (3dp) material systems”. Journal of Manufacturing Science and Engineering, Vol. 132 / 011008-1
- [7] Michaels, S., Sachs, E. M., and Cima, M. J., (1992). “Metal parts generation by three-dimensional printing”. Solid Freeform Fabrication Symposium, 244-250.
- [8] Gonzàlez, F. S., 2017. Re-design, manufacturing and assembly of a ceramic delta 3D printer. Aalto University, Industrial Engineering, Master’s Thesis, 67, Finland.
- [9] Gürgen, M., Kayacan, C. Bağlayıcı Püskürtmeli Metal Eklemeli İmalatta Kullanılan Parametreler. Uluborlu Mesleki Bilimler Dergisi, 3(1), 19-27.
- [10] Lores, A., Azurmendi, N., Agote, I., and Zuza, E. (2019). “A review on recent developments in binder jetting metal additive manufacturing: materials and process characteristics”. Powder Metallurgy, 62(5), 267-296.
- [11] Stevens, E., Schloder, S., Bono, E., Schmidt, D., and Chmielus, M. (2018). “Density variation in binder jetting 3D-printed and sintered Ti-6Al-4V”. Additive Manufacturing, 22, 746-752.
- [12] Paranthaman, M. P., Shafer, C. S., Elliott, A. M., Siddel, D. H., McGuire, M. A., Springfield, R. M., and Ormerod, J. (2016). “Binder jetting: a novel NdFeB bonded magnet fabrication process”. Jom, 68(7), 1978-1982.
- [13] Mostafaei, A., Stevens, E. L., Hughes, E. T., Biery, S. D., Hilla, C., and Chmielus, M., (2016). “Powder bed binder jet printed alloy 625: Densification, microstructure and mechanical properties”. Materials & Design, 108, 126-135.
- [14] Patterson, A. E., Messimer, S. L., & Farrington, P. A. (2017). Overhanging features and the SLM/DMLS residual stresses problem: Review and future research need. Technologies, 5(2), 15.
- [15] Mukherjee, T., Zhang, W., and DebRoy, T. (2017). “An improved prediction of residual stresses and distortion in additive manufacturing”. Computational Materials Science, 126, 360-372.
- [16] Nastac, M., Klein, R. L. A., and ExOne, I. (2017). “Microstructure And Mechanical Properties Comparison Of 316l Parts Produced By Different Additive Manufacturing Processes”. Solid Freeform Fabrication Symposium, 28, 332-341.
- [17] Torabi, P., Petros, M., Khoshnevis, B., 2014. Calibration of a Piezo-Electric Printhead in the Selective Inhibition Sintering (SIS) Process for Fabrication of High-Quality Metallic Parts. In
- [18] Schmitt, C.T., 2016. Low-Cost Inkjet Process for 3-D Printing, Undergraduate Honors Theses, 53, University of Arkansas.
- [19] Derby, B., (2010). “Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution”. Annual Review of Materials Research, 40, 395-414.
- [20] Cheng, Y. L., Chang, C. H., & Kuo, C. (2020). Experimental study on leveling mechanism for material-jetting-type color 3D printing. Rapid Prototyping Journal.
- [21] Schueren B.V, Kruth J.P., 1995. Powder deposition in selective metal powder sintering. Rapid Prototyping Journal, 1, 23-31.