ARAZİ UYGULAMALARI İÇİN İNSANSIZ YER ARACI GELİŞTİRİLMESİ
Yıl 2022,
Cilt: 5 Sayı: 1, 1 - 13, 06.07.2022
Salih Vardin
Pınar Demircioğlu
,
İsmail Böğrekci
Öz
Bilim ve teknolojinin gelişmesiyle birlikte, hiper-yüksek hassasiyetli sensörlerin ve sağlam, yüksek potansiyelli kontrol sistemlerinin geliştirilmesiyle insansız kara araçları önemli hale gelmiştir. Ayrıca insansız kara aracının çeşitli alanlarda uygulamaları bulunmaktadır. Sivil kullanım için, karmaşık yol durumlarının ve sürücülerin dikkatsizliklerinin neden olduğu kazaları ortadan kaldırarak büyük kayıplardan kurtulmayı bu tarz araçlar mümkün kılabilmektedir. Ek olarak, yine insansız kara aracının kullanımı askeri uygulamalarda askerlerin tehlike altında kalmasını engellemekte potansiyel katkılarda bulunmaktadır.
Bu çalışmada, kompakt şasili ve dört tekerden tahrikli bir insansız kara aracı geliştirilmiştir. İnsansız kara aracı, düşük hız (< 1 m/s) uygulamaları için geliştirilmiştir. Üretilen prototip 5 kg taşıma kapasitesine sahiptir ve bir verici yardımıyla uzaktan kontrol edilebilmektedir. Araç dizaynı sonlu elemanlar metoduyla incelenmiş ve yapısal dayanımı uygun bulunmuştur. Yapılan arazi testlerinde de prototipin gerçek performansı incelenerek yapısal dayanımı doğrulanmıştır. Ortaya çıkarılan prototip düz bir çizgide 6 km/h azami hıza ulaşabilmekte, tam taşıma kapasitesi yüklü iken 28 dakika aktif olabilmekte ve sıfır derece dönme yarıçapı ile dönebilmektedir.
Destekleyen Kurum
Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri (BAP)
Teşekkür
Bu çalışma, MF-19001 proje numarası ile Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri (BAP) tarafından desteklenmiştir.
Kaynakça
- [1] Haas, G. (2009). Modeling and Calibrating a 4-wheel Skid-Steer Research Robot. Army Research Laboratory, ARL-TN-0370; Army Research Laboratory-Technical Note-0370.
- [2] Cosenzo, K., Chen, J., Reinerman-Jones, L., Barnes, M., Nicholson, D. (2010). Adaptive automation effects on operator performance during a reconnaissance mission with an unmanned ground vehicle. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2135-2139.
- [3] Chen, J.Y.C. (2010). UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics, 53: 940–950.
- [4] Vardin, S. (2019). Development of an Unmanned Ground Vehicle for Off-Road Applications, Unpublished M.Sc. Thesis (2019-M.Sc.-061), Aydın Adnan Menderes University, Turkey.
- [5] Papadakis, P. (2013). Terrain traversability analysis methods for unmanned ground vehicles: A survey. Engineering Applications of Artificial Intelligence, 26: 1373–1385.
- [6] Zhang, G., Duncan, C.A., Kanno, J., Selmic, R.R. (2014). Unmanned ground vehicle navigation in coordinate-free and localization-free wireless sensor and actuator networks. Journal of Intelligent and Robotic Systems, 74: 869–891.
- [7] Vandapel, N., Donamukkala, R.R., Hebert, M. (2006). Unmanned ground vehicle navigation using aerial ladar data. International Journal of Robotics Research, 25: 31–51
- [8] Chengalva, M. K. (2015). U.S. Patent No. 9,163,909. Washington, DC: U.S. Patent and Trademark Office.
- [9] Sewelldirect, A Brief Explanation of CAN Bus (2021), Erişim Tarihi: 23.03.2021. Link: https://sewelldirect.com/learning-center/canbus-technology.
- [10] NI LabWindows, Controller Area Network (CAN) Overview (2021), Erişim Tarihi: 23.03.2021. Link: http://www.ni.com/white-paper/2732/en/#toc3.
DEVELOPMENT OF AN UNMANNED GROUND VEHICLE FOR OFF-ROAD APPLICATIONS
Yıl 2022,
Cilt: 5 Sayı: 1, 1 - 13, 06.07.2022
Salih Vardin
Pınar Demircioğlu
,
İsmail Böğrekci
Öz
With the development of science and technology, unmanned ground vehicles (UGVs) have become important with the development of hyper-high-precision sensors and robust, high-potential control systems. In addition, the unmanned ground vehicle has applications in various fields. For civilian use, such vehicles make it possible to avoid major losses by eliminating accidents caused by complex road situations and driver inattention. In addition, the use of UGVs potentially contributes to preventing endangerment of soldiers in military applications.
In this study, an unmanned ground vehicle (UGV) with a compact chassis and four-wheel drive was developed for low speed (<1 m/s) applications. The prototype produced has a carrying capacity of 5 kg and can be controlled remotely with the help of a transmitter. The vehicle design was examined by FEM (Finite Element Method) methods and its structural strength was found to be suitable. In the field tests, the actual performance of the prototype was examined and its structural strength was verified. The prototype that has been uncovered can reach a maximum speed of 6 km/h in a straight line, can be active for 28 minutes with full load capacity and can turn with a zero degree turning radius.
Kaynakça
- [1] Haas, G. (2009). Modeling and Calibrating a 4-wheel Skid-Steer Research Robot. Army Research Laboratory, ARL-TN-0370; Army Research Laboratory-Technical Note-0370.
- [2] Cosenzo, K., Chen, J., Reinerman-Jones, L., Barnes, M., Nicholson, D. (2010). Adaptive automation effects on operator performance during a reconnaissance mission with an unmanned ground vehicle. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2135-2139.
- [3] Chen, J.Y.C. (2010). UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Ergonomics, 53: 940–950.
- [4] Vardin, S. (2019). Development of an Unmanned Ground Vehicle for Off-Road Applications, Unpublished M.Sc. Thesis (2019-M.Sc.-061), Aydın Adnan Menderes University, Turkey.
- [5] Papadakis, P. (2013). Terrain traversability analysis methods for unmanned ground vehicles: A survey. Engineering Applications of Artificial Intelligence, 26: 1373–1385.
- [6] Zhang, G., Duncan, C.A., Kanno, J., Selmic, R.R. (2014). Unmanned ground vehicle navigation in coordinate-free and localization-free wireless sensor and actuator networks. Journal of Intelligent and Robotic Systems, 74: 869–891.
- [7] Vandapel, N., Donamukkala, R.R., Hebert, M. (2006). Unmanned ground vehicle navigation using aerial ladar data. International Journal of Robotics Research, 25: 31–51
- [8] Chengalva, M. K. (2015). U.S. Patent No. 9,163,909. Washington, DC: U.S. Patent and Trademark Office.
- [9] Sewelldirect, A Brief Explanation of CAN Bus (2021), Erişim Tarihi: 23.03.2021. Link: https://sewelldirect.com/learning-center/canbus-technology.
- [10] NI LabWindows, Controller Area Network (CAN) Overview (2021), Erişim Tarihi: 23.03.2021. Link: http://www.ni.com/white-paper/2732/en/#toc3.