Derleme
BibTex RIS Kaynak Göster

Biyomedikal Uygulamalar için Titanyum Alaşımlarının Eklemeli İmalatı

Yıl 2022, Cilt: 5 Sayı: 1, 54 - 74, 06.07.2022

Öz

Eklemeli imalat (AM) veya üç boyutlu baskının (3DP) önemli ilerleyişi, imalat sektöründe esneklik sağlayarak, müşteriye özel, karmaşık geometrilerin elde edilmesinin yolunu açmış ve çok sayıda araştırma-geliştirme çalışmasına hizmet ederek pek çok yeniliğe de öncü olmuştur. AM proseslerine endüstriyel ve akademik alanlardaki ilgi giderek artmaktadır. Son yirmi yılda, eklemeli imalat ile biyomalzeme üretimi önem kazanmış ve tıbbi implant talebi de aşırı artmıştır. Eklemeli imalat ve biyomalzeme kombinasyonu, özellikle hastaya özgü klinik uygulamalara yönelik gelecek vaat etmektedir. Bu bağlamda, 3D basılabilir biyomalzemeler implantlar için uygun bir seçenek olmuştur. Biyouyumlu, çok yönlü ve uyarlanabilir, ilgili mekanik (dayanım ve rijitlik) ve biyolojik işlevselliklere, gözenekli yapıya, tasarım serbestliğine sahip olma, malzeme tasarrufu sağlama, yüksek doğruluk ile üretim, geometride tasarım gereksinimlerini gerçekleştirme özellikleri sayesinde eklemeli imalat implantlarının miktarı önemli ölçüde artış göstermiştir. İmplant biyomalzemeleri, istenilen bir işlevi elde etmek için yüksek yorulma, aşınma ve korozyon direnci, stabilite, osteogenez ve osseointegrasyon özelliklerinin yanı sıra uzun ömre sahip olmalıdır. Bu çalışma, en yaygın olarak kullanılan implant biyomalzemeleri Ti ve Ti6Al4V alaşımlarının mekanik özellikleri, biyouyumlulukları ve bu biyomalzemelerin mevcut uygulamaları bakımından eklemeli imalat çalışmalarını farklı perspektiflerden incelemektedir.

Kaynakça

  • 1. Stringer, J., Althagathi, T. M., Tse, C. C., Ta, V. D., Shephard, J. D., Esenturk, E., ... & Smith, P. J. (2016). Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality. Manufacturing Review, 3(12).
  • 2. Zhakeyev, A., Wang, P., Zhang, L., Shu, W., Wang, H., & Xuan, J. (2017). Additive manufacturing: unlocking the evolution of energy materials. Advanced Science, 4(10).
  • 3. ASTM (2012) Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015), ASTM International, West Conshohocken, PA. https://www.astm.org/Standards/F2792.htm
  • 4. Babu,S.S.,&Goodridge, R.(2015).Additive manufacturing.Materials Science and Technology,31(8),881-83.
  • 5. Stansbury, J. W., & Idacavage, M. J. (2016). 3D printing with polymers: Challenges among expanding options and opportunities. Dental materials, 32(1), 54-64.
  • 6. Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21-31.
  • 7. Kumar,A.,Mandal,S.,Barui,S.,Vasireddi, R.,Gbureck,U.,Gelinsky,M.,&Basu,B. (2016). Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering:R: Reports, 103, 1-39.
  • 8. Li, N., Huang, S., Zhang, G., Qin, R., Liu, W., Xiong, H., ... & Blackburn, J. (2019). Progress in additive manufacturing on new materials: A review. Journal of Materials Science & Technology, 35(2), 242-269.
  • 9. Averyanova, M., Cicala, E., Bertrand, P., & Grevey, D. (2012). Experimental design approach to optimize selective laser melting of martensitic 17‐4 PH powder: part I–single laser tracks and first layer. Rapid Prototyping Journal, 18(1), 28-37.
  • 10. Parthasarathy, J., Starly, B., & Raman, S. (2011). A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes, 13(2), 160-170.
  • 11. Shah, F. A., Snis, A., Matic, A., Thomsen, P., & Palmquist, A. (2016). 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta biomaterialia, 30, 357-367.
  • 12. Singh, S., & Ramakrishna, S. (2017). Biomedical applications of additive manufacturing: present and future. Current opinion in biomedical engineering, 2, 105-115.
  • 13. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.
  • 14. Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., ... & Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141. 15. Ackland, D. C., Robinson, D., Redhead, M., Lee, P. V. S., Moskaljuk, A., & Dimitroulis, G. (2017). A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. Journal of the mechanical behavior of biomedical materials, 69, 404-411.
  • 16. Zhang, Z., Wang, B., Hui, D., Qiu, J., & Wang, S. (2017). 3D bioprinting of soft materials-based regenerative vascular structures and tissues. Composites Part B: Engineering, 123, 279-291.
  • 17. Astm, Iso. "ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology." ASTM International, West Conshohocken, PA 3.4 (2015): 5.
  • 18. Ramezannejad, A., Xu, W., Xiao, W. L., Fox, K., Liang, D., & Qian, M. (2019). New insights into nickel-free superelastic titanium alloys for biomedical applications. Current Opinion in Solid State and Materials Science, 23(6).
  • 19. Niemczewska-Wójcik, M., Krawczyk, M., & Wójcik, A. (2015). The evaluation of dimensional and shape accuracy of friction pair elements: Ball-cup. 21st IMEKO World Congress 2015: Measurement in Research and Industry, Prague, 1453-1457.
  • 20. Zarb, G. A., & Schmitt, A. (1990). The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. The Journal of prosthetic dentistry, 64(2), 185-194.
  • 21. Frank, M. C., Joshi, A. M., Anderson, D. D., Thomas, T. P., Rudert, M. J., Tochigi, Y., ... & Brown, T. D. (2010). Patient-specific bone implants using subtractive rapid prototyping. 2010 Solid Freeform Fabrication Symposium, Austin, 854-863.
  • 22. Werner, A., Lechniak, Z., Skalski, K., & Kędzior, K. (2000). Design and manufacture of anatomical hip joint endoprostheses using CAD/CAM systems. Journal of Materials Processing Technology, 107(1-3), 181-186.
  • 23. Yandell K. (2013). Organs on demand. Science, 27, 38-45.
  • 24. Cheah CM, Chua CK, Tan KH, Teo CK. (2003). Integration of laser surface digitizing with CAD/CAM techniques for developing facial prostheses. Part 1: design and fabrication of prosthesis replicas. International Journal of Prosthodontics, 16(4), 435-441.
  • 25. Sun W, Starly B, Nam J, Darling A. (2005). Bio-CAD modeling and its applications in computer-aided tissue engineering. Computer-Aided Design, 37(11), 1097–1114.
  • 26. C. Caparrós, M. Ortiz-Hernandez, M. Molmeneu, M. Punset, J.A. Calero, C. Aparicio, M. Fernández-Fairén, R. Perez, F.J. Gil, J. (2016). Bioactive macroporous titanium implants highly interconnected. Journal of Materials Science: Materials in Medicine, 27(10), 1-11.
  • 27. Palmquist, A., Snis, A., Emanuelsson, L., Browne, M., & Thomsen, P. (2013). Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid and porous titanium alloy: Experimental studies in sheep. Journal of biomaterials applications, 27(8), 1003-1016.
  • 28. Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental materials, 23(7), 844-854.
  • 29. Sanaei, N., & Fatemi, A. (2020). Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Progress in Materials Science, 117.
  • 30. Popov, V. V., Muller-Kamskii, G., Kovalevsky, A., Dzhenzhera, G., Strokin, E., Kolomiets, A., & Ramon, J. (2018). Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomedical engineering letters, 8(4), 337-344.
  • 31. Zaffe, D., Bertoldi, C., & Consolo, U. (2004). Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti–6Al–4V screws, hydroxyapatite granules. Biomaterials,25(17), 3837-44.
  • 32. Gupta, V. B., Anitha, S., Hegde, M. L., Zecca, L., Garruto, R. M., Ravid, R., ... & Rao, K. J. (2005). Aluminium in Alzheimer’s disease: are we still at a crossroad?. Cellular and Molecular Life Sciences CMLS, 62(2), 143-158.
  • 33. Tomljenovic, L. (2011). Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link?. Journal of Alzheimer's Disease, 23(4), 567-598.
  • 34. Avila-Costa, M. R., Fortoul, T. I., Colın-Barenque, L., Ordonez-Librado, J., & Gutierrez-Valdez, A. (2007). Vanadium and the nervous system. Vanadium: Its Impact on Health, 29-42.
  • 35. Shen, X., Shukla, P., Swanson, P., An, Z., Prabhakaran, S., Waugh, D., ... & Lawrence, J. (2019). Altering the wetting properties of orthopaedic titanium alloy (Ti–6Al–7Nb) using laser shock peening. Journal of Alloys and Compounds, 801, 327-342.
  • 36. Yamanoglu, R., Efendi, E., Kolayli, F., Uzuner, H., & Daoud, I. (2018). Production and mechanical properties of Ti–5Al–2.5 Fe–xCu alloys for biomedical applications. Biomedical Materials, 13(2).
  • 37. Matsuno, H., Yokoyama, A., Watari, F., Uo, M., & Kawasaki, T. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253-1262.
  • 38. Wang, J. X., Fan, Y. B., Gao, Y., Hu, Q. H., & Wang, T. C. (2009). TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials, 30(27), 4590-4600.
  • 39. Frisken, K. W., Dandie, G. W., Lugowski, S., & Jordan, G. (2002). A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Australian dental journal, 47(3), 214-217.
  • 40. Sicilia, A., Cuesta, S., Coma, G., Arregui, I., Guisasola, C., Ruiz, E., & Maestro, A. (2008). Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clinical oral implants research, 19(8), 823-835.
  • 41. Qin, Y., Wen, P., Guo, H., Xia, D., Zheng, Y., Jauer, L., ... & Schleifenbaum, J. H. (2019). Additive manufacturing of biodegradable metals: current research status and future perspectives. Acta biomaterialia, 98, 3-22.
  • 42. Mangano, F., Chambrone, L., Van Noort, R., Miller, C., Hatton, P., & Mangano, C. (2014). Direct metal laser sintering titanium dental implants: a review of the current literature. International journal of biomaterials, 2014.
  • 43. Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2012). Laser additive manufacturing of metallic components: materials, processes and mechanisms. International materials reviews, 57(3), 133-164.
  • 44. Herzog, D., Seyda, V., Wycisk, E., & Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371-392.
  • 45. DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112-224.
  • 46. Vandenbroucke, B., & Kruth, J. P. (2007). Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal.
  • 47. Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., ... & Wicker, R. B. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the mechanical behavior of biomedical materials, 2(1), 20-32.
  • 48. Traini, T., Mangano, C., Sammons, R. L., Mangano, F., Macchi, A., & Piattelli, A. (2008). Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental materials, 24(11), 1525-1533. 49. Sudarmadji, N., Tan, J. Y., Leong, K. F., Chua, C. K., & Loh, Y. T. (2011). Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta biomaterialia, 7(2), 530-537.
  • 50. Yan, M., & Yu, P. (2015). An Overview of densification, microstructure and mechanical property of additively manufactured Ti-6Al-4V—Comparison among selective laser melting, electron beam melting, laser metal deposition and selective laser sintering, and with conventional powder. Sintering techniques of materials.
  • 51. Łyczkowska, E., Szymczyk, P., Dybała, B., & Chlebus, E. (2014). Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing. Archives of Civil and Mechanical Engineering, 14, 586-594.
  • 52. Van Bael, S., Chai, Y. C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., ... & Schrooten, J. J. A. B. (2012). The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta biomaterialia, 8(7), 2824-2834.
  • 53. Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M., Pattanayak, D. K., ... & Nakamura, T. (2011). Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomaterialia, 7(5), 2327-2336.
  • 54. Krishna, B. V., Xue, W., Bose, S., & Bandyopadhyay, A. (2008). Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta biomaterialia, 4(3), 697-706.
  • 55. Wang, Q., Han, C., Choma, T., Wei, Q., Yan, C., Song, B., & Shi, Y. (2017). Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting. Materials & Design, 126, 268-277.
  • 56. Arabnejad, S., Johnston, R. B., Pura, J. A., Singh, B., Tanzer, M., & Pasini, D. (2016). High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta biomaterialia, 30, 345-356.
  • 57. Andani, M. T., Moghaddam, N. S., Haberland, C., Dean, D., Miller, M. J., & Elahinia, M. (2014). Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta biomaterialia, 10(10), 4058-70.
  • 58. Harun, W. S. W., Kamariah, M. S. I. N., Muhamad, N., Ghani, S. A. C., Ahmad, F., & Mohamed, Z. (2018). A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 327, 128-151.
  • 59. Wazen RM, Lefebvre LP, Baril E, Nanci A. (2010). Initial evaluation of bone in growth into a novel porous titanium coating. J Biomed Mater Res Part B Appl Biomaterials, 94(1), 64–71.
  • 60. Krishna, B. V., Bose, S., & Bandyopadhyay, A. (2007). Low stiffness porous Ti structures for load-bearing implants. Acta biomaterialia, 3(6), 997-1006.
  • 61. Xue W, Krishna BV, Bandyopadhyay A, Bose S. (2007). Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater., 3, 1007–18.
  • 62. Zadpoor, Amir A. (2017). Design for additive bio-manufacturing: From patient-specific medical devices to rationally designed meta-biomaterials. International journal of molecular sciences, 18(8).
  • 63. Moiduddin, K., Darwish, S., Al-Ahmari, A., ElWatidy, S., Mohammad, A., & Ameen, W. (2017). Structural and mechanical characterization of custom design cranial implant created using additive manufacturing. Electronic Journal of Biotechnology, 29, 22-31.
  • 64. Gu, D., & Shen, Y. (2008). Processing conditions and microstructural features of porous 316L stainless steel components by DMLS. Applied Surface Science, 255(5), 1880-1887.
  • 65. Bram, M., Stiller, C., Buchkremer, H. P., Stöver, D., & Baur, H. (2000). High‐porosity titanium, stainless steel, and superalloy parts. Advanced engineering materials, 2(4), 196-199. 66. Lee, J. H., Kim, H. E., & Koh, Y. H. (2009). Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters, 63(23), 1995-1998.
  • 67. Bandyopadhyay, A., Espana, F., Balla, V. K., Bose, S., Ohgami, Y., & Davies, N. M. (2010). Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta biomaterialia, 6(4), 1640-1648.
  • 68. Campoli, G., Borleffs, M. S., Yavari, S. A., Wauthle, R., Weinans, H., & Zadpoor, A. A. (2013). Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 49, 957-965.
  • 69. Chen, H., Wang, C., Zhu, X., Zhang, K., Fan, Y., & Zhang, X. (2014). Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology. Materials Science and Engineering: C, 43, 182-188.
  • 70. Matassi, F., Botti, A., Sirleo, L., Carulli, C., & Innocenti, M. (2013). Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism, 10(2), 111.
  • 71. Zhang, Z., Jones, D., Yue, S., Lee, P. D., Jones, J. R., Sutcliffe, C. J., & Jones, E. (2013). Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Materials Science and Engineering: C, 33(7), 4055-4062.
  • 72. Yang, S., Leong, K. F., Du, Z., & Chua, C. K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue engineering, 7(6), 679-689.
  • 73. He, F. M., Yang, G. L., Li, Y. N., Wang, X. X., & Zhao, S. F. (2009). Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit. International journal of oral and maxillofacial surgery, 38(6), 677-681.
  • 74. Gittens, R. A., Scheideler, L., Rupp, F., Hyzy, S. L., Geis-Gerstorfer, J., Schwartz, Z., & Boyan, B. D. (2014). A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta biomaterialia, 10(7), 2907-2918.
  • 75. Menzies, K. L., & Jones, L. (2010). The impact of contact angle on the biocompatibility of biomaterials. Optometry and Vision Science, 87(6), 387-399.
  • 76. Lang, N. P., Salvi, G. E., Huynh‐Ba, G., Ivanovski, S., Donos, N., & Bosshardt, D. D. (2011). Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clinical oral implants research, 22(4), 349-356.
  • 77. Sartoretto, S. C., Calasans-Maia, J. D. A., Costa, Y. O. D., Louro, R. S., Granjeiro, J. M., & Calasans-Maia, M. D. (2017). Accelerated healing period with hydrophilic implant placed in sheep tibia. Brazilian dental journal, 28(5), 559-565.
  • 78. Rodriguez-Contreras, A., Punset, M., Calero, J. A., Gil, F. J., Ruperez, E., & Manero, J. M. (2020). Powder metallurgy with space holder for porous titanium implants: A review. Journal of Materials Science & Technology.
  • 79. Sagbas, B. (2018). An Overview of Additive Manufacturing Methods for Biomedical Applications. Athens: ATINER'S Conference Paper Series, Atina, 1-15.
  • 80. Covarrubias, C., Mattmann, M., Von Marttens, A., Caviedes, P., Arriagada, C., Valenzuela, F., ... & Corral, C. (2016). Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles. Applied Surface Science, 363, 286-295.
  • 81. Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta biomaterialia, 11, 494-502.
  • 82. Jimbo, R., Sawase, T., Baba, K., Kurogi, T., Shibata, Y., & Atsuta, M. (2008). Enhanced initial cell responses to chemically modified anodized titanium. Clinical implant dentistry and related research, 10(1), 55-61.
  • 83. Zhao, L., Chang, J., & Zhai, W. (2005). Effect of crystallographic phases of TiO2 on hepatocyte attachment, proliferation and morphology. Journal of biomaterials applications, 19(3), 237-252.
  • 84. Lorenzetti, M., Dakischew, O., Trinkaus, K., Susanne Lips, K., Schnettler, R., Kobe, S., & Novak, S. (2015). Enhanced osteogenesis on titanium implants by UVB photofunctionalization of hydrothermally grown TiO2 coatings. Journal of biomaterials applications, 30(1), 71-84.
  • 85. Wang, G., Li, J., Lv, K., Zhang, W., Ding, X., Yang, G.,... & Jiang, X. (2016). Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Scientific reports, 6(1), 1-13.
  • 86. Umehara, H., Kobatake, R., Oki, Y., Makihara, Y., Kubo, T., & Tsuga, K. (2018). Histological and bone morphometric evaluation of osseointegration aspects by alkali hydrothermally-treated implants. Applied Sciences, 8(4), 635.
  • 87. Liu, Y., Zhou, Y., Jiang, T., Liang, Y. D., Zhang, Z., & Wang, Y. N. (2017). Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study. International journal of oral science, 9(3), 133-138.
  • 88. Li, K., Wang, C., Yan, J., Zhang, Q., Dang, B., Wang, Z., ... & Han, Y. (2018). Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Scientific reports, 8(1), 1-10.
  • 89. Rao, P. J., Pelletier, M. H., Walsh, W. R., & Mobbs, R. J. (2014). Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthopaedic surgery, 6(2), 81-89.
  • 90. Cox, S. C., Jamshidi, P., Eisenstein, N. M., Webber, M. A., Burton, H., Moakes, R. J., ... & Grover, L. M. (2017). Surface finish has a critical influence on biofilm formation and mammalian cell attachment to additively manufactured prosthetics. ACS Biomaterials Science & Engineering, 3(8), 1616-1626.
  • 91. Perez, R. A., & Mestres, G. (2016). Role of pore size and morphology in musculo-skeletal tissue regeneration. Materials Science and Engineering: C, 61, 922-939.
  • 92. Vaithilingam, J., Prina, E., Goodridge, R. D., Hague, R. J., Edmondson, S., Rose, F. R., & Christie, S. D. (2016). Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Materials Science and Engineering: C, 67, 294-303.
  • 93. Weißmann, V., Bader, R., Hansmann, H., & Laufer, N. (2016). Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Materials & Design, 95, 188-197.
  • 94. Benedetti, M., Cazzolli, M., Fontanari, V., & Leoni, M. (2016). Fatigue limit of Ti6Al4V alloy produced by Selective Laser Sintering. Procedia Structural Integrity, 2, 3158-3167.
  • 95. De Damborenea, J. J., Arenas, M. A., Larosa, M. A., Jardini, A. L., de Carvalho Zavaglia, C. A., & Conde, A. (2017). Corrosion of Ti6Al4V pins produced by direct metal laser sintering. Applied Surface Science, 393, 340-347.
  • 96. De Formanoir, C., Michotte, S., Rigo, O., Germain, L., & Godet, S. (2016). Electron beam melted Ti–6Al–4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material. Materials Science and Engineering: A, 652, 105-119.
  • 97. Palmquist, A., Shah, F. A., Emanuelsson, L., Omar, O., & Suska, F. (2017). A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron, 94, 1-8. 98. Zhai, Y., Galarraga, H., & Lados, D. A. (2015). Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Engineering, 114, 658-666.
  • 99. Lv, Y. H., Li, J., Tao, Y. F., & Hu, L. F. (2016). Oxidation behaviors of the TiNi/Ti2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding. Journal of Alloys and Compounds, 679, 202-212.
  • 100. Khademzadeh, S., Carmignato, S., Parvin, N., Zanini, F., & Bariani, P. F. (2016). Micro porosity analysis in additive manufactured NiTi parts using micro computed tomography and electron microscopy. Materials & Design, 90, 745-752.
  • 101. Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering: R: Reports, 129, 1-16.
  • 102. Mitchell, A., Lafont, U., Hołyńska, M., & Semprimoschnig, C. J. A. M. (2018). Additive manufacturing—A review of 4D printing and future applications. Additive Manufacturing, 24, 606-626.
  • 103. Krujatz, F., Lode, A., Seidel, J., Bley, T., Gelinsky, M., & Steingroewer, J. (2017). Additive Biotech—Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology. New biotechnology, 39, 222-231.
  • 104. Mohammed, A., Elshaer, A., Sareh, P., Elsayed, M., & Hassanin, H. (2020). Additive manufacturing technologies for drug delivery applications. International journal of pharmaceutics, 580, 119245.
  • 105. Honarvar, F., & Varvani-Farahani, A. (2020). A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control. Ultrasonics, 106227.
  • 106. Telang, V. S., Pemmada, R., Thomas, V., Ramakrishna, S., Tandon, P., & Nanda, H. S. (2021). Harnessing Additive Manufacturing for Magnesium Based Metallic Bioimplants: Recent Advances and Future Perspectives. Current Opinion in Biomedical Engineering, 100264.
  • 107. Davis, J.R. (1998). Metals handbook desk edition. Metals Handbook Desk Edition. 2nd edition. ASM International, 1521.
  • 108. Gibson, L.J., Ashby, M.F. (1997). Cellular Solids. Cambridge University Press, Cambridge.
  • 109. Chen, J. W., Chen, W. C., Lai, Y. S., Chang, C. M., & Wang, S. T. (2015). Effect of a novel compressible artificial disk on biomechanical performance of cervical spine: a finite element study. Advances in Mechanical Engineering, 7(8), 1687814015602597.
  • 110. Mouritz, Adrian P. (2012). Introduction to aerospace materials. Elsevier.
  • 111. Özsoy, K., & Kayacan, M. C. (2018). Ergiyik biriktirme yöntemiyle hafifletilmiş kişiye özel kafatasi implantin hizli prototiplenmesi. Uluborlu mesleki bilimler dergisi, 1(1), 1-11.
  • 112. Research and Markets The World's Largest Market Research Store, Healthcare Additive Manufacturing Market Size, Share & Trends Analysis Report by Technology (Laser Sintering, Deposition Modeling), by Application (Medical Implants, Wearable Devices), by Material, and Segment Forecasts, 2021 - 2028. Erişim Tarihi: 09.04.2021.
  • 113. 3D Printing Media Network, Progressing orthopedic implants with additive manufacturing, Erişim Linki: https://www.3dprintingmedia.network/progressing-orthopedic-implants-additive-manufacturing/. Erişim Tarihi: 09.04.2021.
  • 114. Printing News-RICK REA, Smartech analyzes the metal service bureau business in new report, Erişim Linki: https://www.rickrea.com/printingnews/smartech-analyzes-the-metal-service-bureau-business-in-new-report. Erişim Tarihi: 12.04.2021

An Overview on Additive Manufacturing of Titanium Alloys for Biomedical Applications

Yıl 2022, Cilt: 5 Sayı: 1, 54 - 74, 06.07.2022

Öz

The significant progress of additive manufacturing (AM) or three dimensional printing (3DP) has induced to a revolution in manufacturing sector providing high flexibility, feasibility of complex geometries in customization at the consumer level and also serving as an efficient tool for further research and development. AM processes are increasingly attracting many interests at industrial and academic fields. In the last two decades, biomaterial production with additive manufacturing has gained significance and the medical implant demand also has undergone explosive growth. Additive manufacturing and biomaterial combination is very promising, especially towards patient specific clinical applications. In this context, 3D printable biomaterials are suitable candidates for implants and the amount of additively-manufactured implants is significantly increasing due to their unique properties which are biocompatible, versatile and adaptable, have relevant mechanical (strength and stiffness) and biological functionalities, porous structure, design freedom, provide material save, produce with good accuracy, fulfill design requirements in geometry. Implant biomaterials should have high fatigue, wear and corrosion resistance, stability, osteogenesis and osseointegration properties as well as long lifespan to achieve an intended function. This study overviews the studies on additive manufacturing of most widely used implant biomaterials Ti and Ti6Al4V alloys, in terms of mechanical properties, biocompatibility and current state of applications of these biomaterials from different perspectives.

Kaynakça

  • 1. Stringer, J., Althagathi, T. M., Tse, C. C., Ta, V. D., Shephard, J. D., Esenturk, E., ... & Smith, P. J. (2016). Integration of additive manufacturing and inkjet printed electronics: a potential route to parts with embedded multifunctionality. Manufacturing Review, 3(12).
  • 2. Zhakeyev, A., Wang, P., Zhang, L., Shu, W., Wang, H., & Xuan, J. (2017). Additive manufacturing: unlocking the evolution of energy materials. Advanced Science, 4(10).
  • 3. ASTM (2012) Standard Terminology for Additive Manufacturing Technologies, (Withdrawn 2015), ASTM International, West Conshohocken, PA. https://www.astm.org/Standards/F2792.htm
  • 4. Babu,S.S.,&Goodridge, R.(2015).Additive manufacturing.Materials Science and Technology,31(8),881-83.
  • 5. Stansbury, J. W., & Idacavage, M. J. (2016). 3D printing with polymers: Challenges among expanding options and opportunities. Dental materials, 32(1), 54-64.
  • 6. Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21-31.
  • 7. Kumar,A.,Mandal,S.,Barui,S.,Vasireddi, R.,Gbureck,U.,Gelinsky,M.,&Basu,B. (2016). Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering:R: Reports, 103, 1-39.
  • 8. Li, N., Huang, S., Zhang, G., Qin, R., Liu, W., Xiong, H., ... & Blackburn, J. (2019). Progress in additive manufacturing on new materials: A review. Journal of Materials Science & Technology, 35(2), 242-269.
  • 9. Averyanova, M., Cicala, E., Bertrand, P., & Grevey, D. (2012). Experimental design approach to optimize selective laser melting of martensitic 17‐4 PH powder: part I–single laser tracks and first layer. Rapid Prototyping Journal, 18(1), 28-37.
  • 10. Parthasarathy, J., Starly, B., & Raman, S. (2011). A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. Journal of Manufacturing Processes, 13(2), 160-170.
  • 11. Shah, F. A., Snis, A., Matic, A., Thomsen, P., & Palmquist, A. (2016). 3D printed Ti6Al4V implant surface promotes bone maturation and retains a higher density of less aged osteocytes at the bone-implant interface. Acta biomaterialia, 30, 357-367.
  • 12. Singh, S., & Ramakrishna, S. (2017). Biomedical applications of additive manufacturing: present and future. Current opinion in biomedical engineering, 2, 105-115.
  • 13. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 143, 172-196.
  • 14. Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., ... & Xie, Y. M. (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials, 83, 127-141. 15. Ackland, D. C., Robinson, D., Redhead, M., Lee, P. V. S., Moskaljuk, A., & Dimitroulis, G. (2017). A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. Journal of the mechanical behavior of biomedical materials, 69, 404-411.
  • 16. Zhang, Z., Wang, B., Hui, D., Qiu, J., & Wang, S. (2017). 3D bioprinting of soft materials-based regenerative vascular structures and tissues. Composites Part B: Engineering, 123, 279-291.
  • 17. Astm, Iso. "ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology." ASTM International, West Conshohocken, PA 3.4 (2015): 5.
  • 18. Ramezannejad, A., Xu, W., Xiao, W. L., Fox, K., Liang, D., & Qian, M. (2019). New insights into nickel-free superelastic titanium alloys for biomedical applications. Current Opinion in Solid State and Materials Science, 23(6).
  • 19. Niemczewska-Wójcik, M., Krawczyk, M., & Wójcik, A. (2015). The evaluation of dimensional and shape accuracy of friction pair elements: Ball-cup. 21st IMEKO World Congress 2015: Measurement in Research and Industry, Prague, 1453-1457.
  • 20. Zarb, G. A., & Schmitt, A. (1990). The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. The Journal of prosthetic dentistry, 64(2), 185-194.
  • 21. Frank, M. C., Joshi, A. M., Anderson, D. D., Thomas, T. P., Rudert, M. J., Tochigi, Y., ... & Brown, T. D. (2010). Patient-specific bone implants using subtractive rapid prototyping. 2010 Solid Freeform Fabrication Symposium, Austin, 854-863.
  • 22. Werner, A., Lechniak, Z., Skalski, K., & Kędzior, K. (2000). Design and manufacture of anatomical hip joint endoprostheses using CAD/CAM systems. Journal of Materials Processing Technology, 107(1-3), 181-186.
  • 23. Yandell K. (2013). Organs on demand. Science, 27, 38-45.
  • 24. Cheah CM, Chua CK, Tan KH, Teo CK. (2003). Integration of laser surface digitizing with CAD/CAM techniques for developing facial prostheses. Part 1: design and fabrication of prosthesis replicas. International Journal of Prosthodontics, 16(4), 435-441.
  • 25. Sun W, Starly B, Nam J, Darling A. (2005). Bio-CAD modeling and its applications in computer-aided tissue engineering. Computer-Aided Design, 37(11), 1097–1114.
  • 26. C. Caparrós, M. Ortiz-Hernandez, M. Molmeneu, M. Punset, J.A. Calero, C. Aparicio, M. Fernández-Fairén, R. Perez, F.J. Gil, J. (2016). Bioactive macroporous titanium implants highly interconnected. Journal of Materials Science: Materials in Medicine, 27(10), 1-11.
  • 27. Palmquist, A., Snis, A., Emanuelsson, L., Browne, M., & Thomsen, P. (2013). Long-term biocompatibility and osseointegration of electron beam melted, free-form–fabricated solid and porous titanium alloy: Experimental studies in sheep. Journal of biomaterials applications, 27(8), 1003-1016.
  • 28. Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental materials, 23(7), 844-854.
  • 29. Sanaei, N., & Fatemi, A. (2020). Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Progress in Materials Science, 117.
  • 30. Popov, V. V., Muller-Kamskii, G., Kovalevsky, A., Dzhenzhera, G., Strokin, E., Kolomiets, A., & Ramon, J. (2018). Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomedical engineering letters, 8(4), 337-344.
  • 31. Zaffe, D., Bertoldi, C., & Consolo, U. (2004). Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti–6Al–4V screws, hydroxyapatite granules. Biomaterials,25(17), 3837-44.
  • 32. Gupta, V. B., Anitha, S., Hegde, M. L., Zecca, L., Garruto, R. M., Ravid, R., ... & Rao, K. J. (2005). Aluminium in Alzheimer’s disease: are we still at a crossroad?. Cellular and Molecular Life Sciences CMLS, 62(2), 143-158.
  • 33. Tomljenovic, L. (2011). Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link?. Journal of Alzheimer's Disease, 23(4), 567-598.
  • 34. Avila-Costa, M. R., Fortoul, T. I., Colın-Barenque, L., Ordonez-Librado, J., & Gutierrez-Valdez, A. (2007). Vanadium and the nervous system. Vanadium: Its Impact on Health, 29-42.
  • 35. Shen, X., Shukla, P., Swanson, P., An, Z., Prabhakaran, S., Waugh, D., ... & Lawrence, J. (2019). Altering the wetting properties of orthopaedic titanium alloy (Ti–6Al–7Nb) using laser shock peening. Journal of Alloys and Compounds, 801, 327-342.
  • 36. Yamanoglu, R., Efendi, E., Kolayli, F., Uzuner, H., & Daoud, I. (2018). Production and mechanical properties of Ti–5Al–2.5 Fe–xCu alloys for biomedical applications. Biomedical Materials, 13(2).
  • 37. Matsuno, H., Yokoyama, A., Watari, F., Uo, M., & Kawasaki, T. (2001). Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials, 22(11), 1253-1262.
  • 38. Wang, J. X., Fan, Y. B., Gao, Y., Hu, Q. H., & Wang, T. C. (2009). TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials, 30(27), 4590-4600.
  • 39. Frisken, K. W., Dandie, G. W., Lugowski, S., & Jordan, G. (2002). A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Australian dental journal, 47(3), 214-217.
  • 40. Sicilia, A., Cuesta, S., Coma, G., Arregui, I., Guisasola, C., Ruiz, E., & Maestro, A. (2008). Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clinical oral implants research, 19(8), 823-835.
  • 41. Qin, Y., Wen, P., Guo, H., Xia, D., Zheng, Y., Jauer, L., ... & Schleifenbaum, J. H. (2019). Additive manufacturing of biodegradable metals: current research status and future perspectives. Acta biomaterialia, 98, 3-22.
  • 42. Mangano, F., Chambrone, L., Van Noort, R., Miller, C., Hatton, P., & Mangano, C. (2014). Direct metal laser sintering titanium dental implants: a review of the current literature. International journal of biomaterials, 2014.
  • 43. Gu, D. D., Meiners, W., Wissenbach, K., & Poprawe, R. (2012). Laser additive manufacturing of metallic components: materials, processes and mechanisms. International materials reviews, 57(3), 133-164.
  • 44. Herzog, D., Seyda, V., Wycisk, E., & Emmelmann, C. (2016). Additive manufacturing of metals. Acta Materialia, 117, 371-392.
  • 45. DebRoy, T., Wei, H. L., Zuback, J. S., Mukherjee, T., Elmer, J. W., Milewski, J. O., ... & Zhang, W. (2018). Additive manufacturing of metallic components–process, structure and properties. Progress in Materials Science, 92, 112-224.
  • 46. Vandenbroucke, B., & Kruth, J. P. (2007). Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal.
  • 47. Murr, L. E., Quinones, S. A., Gaytan, S. M., Lopez, M. I., Rodela, A., Martinez, E. Y., ... & Wicker, R. B. (2009). Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the mechanical behavior of biomedical materials, 2(1), 20-32.
  • 48. Traini, T., Mangano, C., Sammons, R. L., Mangano, F., Macchi, A., & Piattelli, A. (2008). Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental materials, 24(11), 1525-1533. 49. Sudarmadji, N., Tan, J. Y., Leong, K. F., Chua, C. K., & Loh, Y. T. (2011). Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta biomaterialia, 7(2), 530-537.
  • 50. Yan, M., & Yu, P. (2015). An Overview of densification, microstructure and mechanical property of additively manufactured Ti-6Al-4V—Comparison among selective laser melting, electron beam melting, laser metal deposition and selective laser sintering, and with conventional powder. Sintering techniques of materials.
  • 51. Łyczkowska, E., Szymczyk, P., Dybała, B., & Chlebus, E. (2014). Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing. Archives of Civil and Mechanical Engineering, 14, 586-594.
  • 52. Van Bael, S., Chai, Y. C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., ... & Schrooten, J. J. A. B. (2012). The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta biomaterialia, 8(7), 2824-2834.
  • 53. Fukuda, A., Takemoto, M., Saito, T., Fujibayashi, S., Neo, M., Pattanayak, D. K., ... & Nakamura, T. (2011). Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomaterialia, 7(5), 2327-2336.
  • 54. Krishna, B. V., Xue, W., Bose, S., & Bandyopadhyay, A. (2008). Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta biomaterialia, 4(3), 697-706.
  • 55. Wang, Q., Han, C., Choma, T., Wei, Q., Yan, C., Song, B., & Shi, Y. (2017). Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting. Materials & Design, 126, 268-277.
  • 56. Arabnejad, S., Johnston, R. B., Pura, J. A., Singh, B., Tanzer, M., & Pasini, D. (2016). High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta biomaterialia, 30, 345-356.
  • 57. Andani, M. T., Moghaddam, N. S., Haberland, C., Dean, D., Miller, M. J., & Elahinia, M. (2014). Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta biomaterialia, 10(10), 4058-70.
  • 58. Harun, W. S. W., Kamariah, M. S. I. N., Muhamad, N., Ghani, S. A. C., Ahmad, F., & Mohamed, Z. (2018). A review of powder additive manufacturing processes for metallic biomaterials. Powder Technology, 327, 128-151.
  • 59. Wazen RM, Lefebvre LP, Baril E, Nanci A. (2010). Initial evaluation of bone in growth into a novel porous titanium coating. J Biomed Mater Res Part B Appl Biomaterials, 94(1), 64–71.
  • 60. Krishna, B. V., Bose, S., & Bandyopadhyay, A. (2007). Low stiffness porous Ti structures for load-bearing implants. Acta biomaterialia, 3(6), 997-1006.
  • 61. Xue W, Krishna BV, Bandyopadhyay A, Bose S. (2007). Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater., 3, 1007–18.
  • 62. Zadpoor, Amir A. (2017). Design for additive bio-manufacturing: From patient-specific medical devices to rationally designed meta-biomaterials. International journal of molecular sciences, 18(8).
  • 63. Moiduddin, K., Darwish, S., Al-Ahmari, A., ElWatidy, S., Mohammad, A., & Ameen, W. (2017). Structural and mechanical characterization of custom design cranial implant created using additive manufacturing. Electronic Journal of Biotechnology, 29, 22-31.
  • 64. Gu, D., & Shen, Y. (2008). Processing conditions and microstructural features of porous 316L stainless steel components by DMLS. Applied Surface Science, 255(5), 1880-1887.
  • 65. Bram, M., Stiller, C., Buchkremer, H. P., Stöver, D., & Baur, H. (2000). High‐porosity titanium, stainless steel, and superalloy parts. Advanced engineering materials, 2(4), 196-199. 66. Lee, J. H., Kim, H. E., & Koh, Y. H. (2009). Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters, 63(23), 1995-1998.
  • 67. Bandyopadhyay, A., Espana, F., Balla, V. K., Bose, S., Ohgami, Y., & Davies, N. M. (2010). Influence of porosity on mechanical properties and in vivo response of Ti6Al4V implants. Acta biomaterialia, 6(4), 1640-1648.
  • 68. Campoli, G., Borleffs, M. S., Yavari, S. A., Wauthle, R., Weinans, H., & Zadpoor, A. A. (2013). Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 49, 957-965.
  • 69. Chen, H., Wang, C., Zhu, X., Zhang, K., Fan, Y., & Zhang, X. (2014). Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology. Materials Science and Engineering: C, 43, 182-188.
  • 70. Matassi, F., Botti, A., Sirleo, L., Carulli, C., & Innocenti, M. (2013). Porous metal for orthopedics implants. Clinical Cases in Mineral and Bone Metabolism, 10(2), 111.
  • 71. Zhang, Z., Jones, D., Yue, S., Lee, P. D., Jones, J. R., Sutcliffe, C. J., & Jones, E. (2013). Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Materials Science and Engineering: C, 33(7), 4055-4062.
  • 72. Yang, S., Leong, K. F., Du, Z., & Chua, C. K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue engineering, 7(6), 679-689.
  • 73. He, F. M., Yang, G. L., Li, Y. N., Wang, X. X., & Zhao, S. F. (2009). Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit. International journal of oral and maxillofacial surgery, 38(6), 677-681.
  • 74. Gittens, R. A., Scheideler, L., Rupp, F., Hyzy, S. L., Geis-Gerstorfer, J., Schwartz, Z., & Boyan, B. D. (2014). A review on the wettability of dental implant surfaces II: Biological and clinical aspects. Acta biomaterialia, 10(7), 2907-2918.
  • 75. Menzies, K. L., & Jones, L. (2010). The impact of contact angle on the biocompatibility of biomaterials. Optometry and Vision Science, 87(6), 387-399.
  • 76. Lang, N. P., Salvi, G. E., Huynh‐Ba, G., Ivanovski, S., Donos, N., & Bosshardt, D. D. (2011). Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clinical oral implants research, 22(4), 349-356.
  • 77. Sartoretto, S. C., Calasans-Maia, J. D. A., Costa, Y. O. D., Louro, R. S., Granjeiro, J. M., & Calasans-Maia, M. D. (2017). Accelerated healing period with hydrophilic implant placed in sheep tibia. Brazilian dental journal, 28(5), 559-565.
  • 78. Rodriguez-Contreras, A., Punset, M., Calero, J. A., Gil, F. J., Ruperez, E., & Manero, J. M. (2020). Powder metallurgy with space holder for porous titanium implants: A review. Journal of Materials Science & Technology.
  • 79. Sagbas, B. (2018). An Overview of Additive Manufacturing Methods for Biomedical Applications. Athens: ATINER'S Conference Paper Series, Atina, 1-15.
  • 80. Covarrubias, C., Mattmann, M., Von Marttens, A., Caviedes, P., Arriagada, C., Valenzuela, F., ... & Corral, C. (2016). Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles. Applied Surface Science, 363, 286-295.
  • 81. Salou, L., Hoornaert, A., Louarn, G., & Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta biomaterialia, 11, 494-502.
  • 82. Jimbo, R., Sawase, T., Baba, K., Kurogi, T., Shibata, Y., & Atsuta, M. (2008). Enhanced initial cell responses to chemically modified anodized titanium. Clinical implant dentistry and related research, 10(1), 55-61.
  • 83. Zhao, L., Chang, J., & Zhai, W. (2005). Effect of crystallographic phases of TiO2 on hepatocyte attachment, proliferation and morphology. Journal of biomaterials applications, 19(3), 237-252.
  • 84. Lorenzetti, M., Dakischew, O., Trinkaus, K., Susanne Lips, K., Schnettler, R., Kobe, S., & Novak, S. (2015). Enhanced osteogenesis on titanium implants by UVB photofunctionalization of hydrothermally grown TiO2 coatings. Journal of biomaterials applications, 30(1), 71-84.
  • 85. Wang, G., Li, J., Lv, K., Zhang, W., Ding, X., Yang, G.,... & Jiang, X. (2016). Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Scientific reports, 6(1), 1-13.
  • 86. Umehara, H., Kobatake, R., Oki, Y., Makihara, Y., Kubo, T., & Tsuga, K. (2018). Histological and bone morphometric evaluation of osseointegration aspects by alkali hydrothermally-treated implants. Applied Sciences, 8(4), 635.
  • 87. Liu, Y., Zhou, Y., Jiang, T., Liang, Y. D., Zhang, Z., & Wang, Y. N. (2017). Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study. International journal of oral science, 9(3), 133-138.
  • 88. Li, K., Wang, C., Yan, J., Zhang, Q., Dang, B., Wang, Z., ... & Han, Y. (2018). Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Scientific reports, 8(1), 1-10.
  • 89. Rao, P. J., Pelletier, M. H., Walsh, W. R., & Mobbs, R. J. (2014). Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthopaedic surgery, 6(2), 81-89.
  • 90. Cox, S. C., Jamshidi, P., Eisenstein, N. M., Webber, M. A., Burton, H., Moakes, R. J., ... & Grover, L. M. (2017). Surface finish has a critical influence on biofilm formation and mammalian cell attachment to additively manufactured prosthetics. ACS Biomaterials Science & Engineering, 3(8), 1616-1626.
  • 91. Perez, R. A., & Mestres, G. (2016). Role of pore size and morphology in musculo-skeletal tissue regeneration. Materials Science and Engineering: C, 61, 922-939.
  • 92. Vaithilingam, J., Prina, E., Goodridge, R. D., Hague, R. J., Edmondson, S., Rose, F. R., & Christie, S. D. (2016). Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Materials Science and Engineering: C, 67, 294-303.
  • 93. Weißmann, V., Bader, R., Hansmann, H., & Laufer, N. (2016). Influence of the structural orientation on the mechanical properties of selective laser melted Ti6Al4V open-porous scaffolds. Materials & Design, 95, 188-197.
  • 94. Benedetti, M., Cazzolli, M., Fontanari, V., & Leoni, M. (2016). Fatigue limit of Ti6Al4V alloy produced by Selective Laser Sintering. Procedia Structural Integrity, 2, 3158-3167.
  • 95. De Damborenea, J. J., Arenas, M. A., Larosa, M. A., Jardini, A. L., de Carvalho Zavaglia, C. A., & Conde, A. (2017). Corrosion of Ti6Al4V pins produced by direct metal laser sintering. Applied Surface Science, 393, 340-347.
  • 96. De Formanoir, C., Michotte, S., Rigo, O., Germain, L., & Godet, S. (2016). Electron beam melted Ti–6Al–4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material. Materials Science and Engineering: A, 652, 105-119.
  • 97. Palmquist, A., Shah, F. A., Emanuelsson, L., Omar, O., & Suska, F. (2017). A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry. Micron, 94, 1-8. 98. Zhai, Y., Galarraga, H., & Lados, D. A. (2015). Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti-6Al-4V alloys fabricated by two additive manufacturing techniques. Procedia Engineering, 114, 658-666.
  • 99. Lv, Y. H., Li, J., Tao, Y. F., & Hu, L. F. (2016). Oxidation behaviors of the TiNi/Ti2Ni matrix composite coatings with different contents of TaC addition fabricated on Ti6Al4V by laser cladding. Journal of Alloys and Compounds, 679, 202-212.
  • 100. Khademzadeh, S., Carmignato, S., Parvin, N., Zanini, F., & Bariani, P. F. (2016). Micro porosity analysis in additive manufactured NiTi parts using micro computed tomography and electron microscopy. Materials & Design, 90, 745-752.
  • 101. Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering: R: Reports, 129, 1-16.
  • 102. Mitchell, A., Lafont, U., Hołyńska, M., & Semprimoschnig, C. J. A. M. (2018). Additive manufacturing—A review of 4D printing and future applications. Additive Manufacturing, 24, 606-626.
  • 103. Krujatz, F., Lode, A., Seidel, J., Bley, T., Gelinsky, M., & Steingroewer, J. (2017). Additive Biotech—Chances, challenges, and recent applications of additive manufacturing technologies in biotechnology. New biotechnology, 39, 222-231.
  • 104. Mohammed, A., Elshaer, A., Sareh, P., Elsayed, M., & Hassanin, H. (2020). Additive manufacturing technologies for drug delivery applications. International journal of pharmaceutics, 580, 119245.
  • 105. Honarvar, F., & Varvani-Farahani, A. (2020). A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control. Ultrasonics, 106227.
  • 106. Telang, V. S., Pemmada, R., Thomas, V., Ramakrishna, S., Tandon, P., & Nanda, H. S. (2021). Harnessing Additive Manufacturing for Magnesium Based Metallic Bioimplants: Recent Advances and Future Perspectives. Current Opinion in Biomedical Engineering, 100264.
  • 107. Davis, J.R. (1998). Metals handbook desk edition. Metals Handbook Desk Edition. 2nd edition. ASM International, 1521.
  • 108. Gibson, L.J., Ashby, M.F. (1997). Cellular Solids. Cambridge University Press, Cambridge.
  • 109. Chen, J. W., Chen, W. C., Lai, Y. S., Chang, C. M., & Wang, S. T. (2015). Effect of a novel compressible artificial disk on biomechanical performance of cervical spine: a finite element study. Advances in Mechanical Engineering, 7(8), 1687814015602597.
  • 110. Mouritz, Adrian P. (2012). Introduction to aerospace materials. Elsevier.
  • 111. Özsoy, K., & Kayacan, M. C. (2018). Ergiyik biriktirme yöntemiyle hafifletilmiş kişiye özel kafatasi implantin hizli prototiplenmesi. Uluborlu mesleki bilimler dergisi, 1(1), 1-11.
  • 112. Research and Markets The World's Largest Market Research Store, Healthcare Additive Manufacturing Market Size, Share & Trends Analysis Report by Technology (Laser Sintering, Deposition Modeling), by Application (Medical Implants, Wearable Devices), by Material, and Segment Forecasts, 2021 - 2028. Erişim Tarihi: 09.04.2021.
  • 113. 3D Printing Media Network, Progressing orthopedic implants with additive manufacturing, Erişim Linki: https://www.3dprintingmedia.network/progressing-orthopedic-implants-additive-manufacturing/. Erişim Tarihi: 09.04.2021.
  • 114. Printing News-RICK REA, Smartech analyzes the metal service bureau business in new report, Erişim Linki: https://www.rickrea.com/printingnews/smartech-analyzes-the-metal-service-bureau-business-in-new-report. Erişim Tarihi: 12.04.2021
Toplam 110 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Derleme Makalesi
Yazarlar

Binnur Sağbaş 0000-0002-4491-0490

Beyza Gavcar Bu kişi benim 0000-0001-8369-0024

Yayımlanma Tarihi 6 Temmuz 2022
Kabul Tarihi 11 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 1

Kaynak Göster

APA Sağbaş, B., & Gavcar, B. (2022). An Overview on Additive Manufacturing of Titanium Alloys for Biomedical Applications. Uluborlu Mesleki Bilimler Dergisi, 5(1), 54-74.
Creative Commons Lisansı
Isparta Uygulamalı Bilimler Üniversitesi Uluborlu Mesleki Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.