Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Low Frequency Ultrasonic Irradition on the Anaerobic Sludge Treatment Process

Yıl 2025, Cilt: 8 Sayı: 1, 53 - 65, 24.03.2025
https://doi.org/10.71445/umbd.1630981

Öz

The management of waste activated sludge is one of the most problem in the operation of wastewater treatment plants. Consequently, the concept of sludge minimization was studied extensively in recent years to solve the problem of the large amount of sludge. Additionally,several conventional methods that were used for the solution of the problem, some new techniques are also under development. One of these techniques is ultrasound, which is defined as sound waves produced in a wide frequency range over the range audible by humans. In the literature, it was demonstrated that the efficiency of physical, chemical, and biological processes of sewage treatment increases with the specific degree of the frequency and dosage of ultrasound by the formation of small cavitation bubbles. The study aimed to investigate changes in the physical properties of waste active sludge and determine the anaerobic decomposition dynamics, following the use of ultrasound irradiation. pH, TS, TVS, DCOD, DDCOD, rheological measurements were conducted for waste activated sludge samples, which were exposed to ultrasonic intensity for different periods, to determine the effectiveness of ultrasonic radiation. After the samples were exposed to ultrasonic radiation, anaerobic batch reactors were operated at two different temperatures, at 25 ºC and 35 °C, for a period of 30 days. Biogas production in reactors were measured every 24 hours on a regular basis. Finally, pH, TS, TVS, DCOD were analyzed to determine the dynamics of the anaerobic decomposition. The results demonstrated that DCOD and DDCOD increased by 58% and 27%, while TS and TVS were decreased by 21% and 30%, respectively as the ultrasonic power and time increased. As a result, removal of TS, TVS and DCOD and the formation of biogas in the anaerobic reactors increased with ultrasonic cavitation, depending on the reactor operating conditions and the character of raw waste activated sludge.

Proje Numarası

Project No. 2375-YL-10

Kaynakça

  • Chu, C. P., Lee, D. J., Chang, B. V., You, C. S., & Tay, J. H. (2002). Weak ultrasonic pretreatment on anaerobic digestion of flocculated activated biosolids. Water Research, 36(11), 2681–2688. https://doi.org/10.1016/S0043-1354(01)00519-9
  • Civelekoglu, G., Yiğit, N. Ö., Kitiş, M., Nickel, K., & Neis, U. (2007). Ultrasound technology applications in water and wastewater treatment. In National Environment Symposium Proceedings (pp. 18–21). Mersin, Turkey.
  • Demir Ö. (2016). Effects of Potassium Permanganate on Sludge Disintegration and Improving with Ultrasonic Pre-treatment. (2016). Uludag University Faculty of Engineering Journal, 21, 189-200.
  • Demir Ö., & Günes E. (2016). Sludge Treatment and Electricity Generation with Microbial Fuel Cells. Sinop Uni. J. Nat. Sci. 1(2): 81 – 89.
  • Edgar, F. C. M., Cristancho, D. E., & Arellano, A. V. (2006). Study of the operational conditions for anaerobic digestion of urban solid wastes. Waste Management, 26(5), 546–556. https://doi.org/10.1016/j.wasman.2005.06.010
  • Erden, G., & Filibeli A. (2010). Ultrasonic pre-treatment of treatment plant sludge itü dergisi su kirlenmesi kontrolü 20, 39-48.
  • Ferrasse, J. H., & Roche, N. (2003). State-of-the-art: Rheological characterization of wastewater treatment sludge. Biochemical Engineering Journal, 16(1), 41–56. https://doi.org/10.1016/S1369-703X(03)00021-4
  • Filibeli A., & Erden, G. (2006). Pretreatment processes applied to decrease quantity and to improve dewatering properties of treatment plant sludge. İtü dergisi/e su kirlenmesi kontrolü 16,3-12.
  • Friedler, E., & Pisanty, E. (2006). Effects of design flow and treatment level on construction and operation costs of municipal wastewater treatment plants and their implications on policy making. Water Research, 40(20), 3751–3758. https://doi.org/10.1016/j.watres.2006.08.022
  • Hall, J. E. (1995). Sewage sludge production, treatment and disposal in the European Union. Journal of the Chartered Institution of Water and Environmental Management, 9, 335–343.
  • Moumeni, O., Hamdaoui, O., & Petrier, C. (2012). Sonochemical degradation of malachite green in water. Chemical Engineering and Processing, 62, 47–53. https://doi.org/10.1016/j.cep.2012.06.001 Naddeo, V., Belgiorno, V., Landi, M., Zara, T., & Napoli, R. M. A. (2009). Effect of sonolysis on waste activated sludge solubilisation and anaerobic biodegradability. Desalination, 249, 762–767. https://doi.org/10.1016/j.desal.2008.09.018 Neis, U. (2000). Ultrasound in water, wastewater and sludge treatment. Water, 21(4–2), 36–39.
  • Neis, U., Nickel, K., & Tiehm, A. (2000). Enhancement of anaerobic sludge digestion by ultrasonic disintegration. Water Science and Technology, 42(9), 73–80. https://doi.org/10.1016/S0273-1223(00)00532-1
  • Nguyen, D. D., Yoon, Y. S., Nguyen, N. D., Bach, Q. V., Bui, X. T., Chang, S. W., Le, H., Guo, S., Huu, W., Hao, H., & Ngo, H. (2017). Enhanced efficiency for better wastewater sludge hydrolysis conversion through ultrasonic hydrolytic pretreatment. Journal of the Taiwan Institute of Chemical Engineers, 71, 244–252. https://doi.org/10.1016/j.jtice.2017.02.011
  • Salsabil, M. R., Prorot, A., Casellas, M., & Dagot, C. (2009). Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility. Chemical Engineering Journal, 148, 327–335. https://doi.org/10.1016/j.cej.2008.09.033
  • Sahinkaya, S. (2015). Disintegration of municipal waste activated sludge by simultaneous combination of acid and ultrasonic pretreatment. Process Safety and Environmental Protection, 93, 201–205. https://doi.org/10.1016/j.psep.2015.02.001
  • Shimizu, T., Kudo, K., & Nasu, Y. (1993). Anaerobic waste activated sludge digestion: A bioconversion and kinetic model. Biotechnology and Bioengineering, 41, 1082–1091. https://doi.org/10.1002/bit.260411008 Tiehm, A., Nickel, K., Zellhorn, M., & Neis, U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Research, 35(8), 123–130. https://doi.org/10.1016/S0043-1354(00)00592-4
  • Wang, R., Liu, J., Hu, Y., Zhou, J., & Cen, K. (2014). Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge. Fuel Processing Technology, 25, 94–105. https://doi.org/10.1016/j.fuproc.2013.12.012
  • Zhao, F., & Cheng, D. (2017). Changes in pore size distribution inside sludge under various ultrasonic conditions. Ultrasonics Sonochemistry, 38, 390–401. https://doi.org/10.1016/j.ultsonch.2017.02.006

Düşük Frekanslı Ultrason Radyasyonun Anaerobik Çamur Arıtım Sürecine Etkileri

Yıl 2025, Cilt: 8 Sayı: 1, 53 - 65, 24.03.2025
https://doi.org/10.71445/umbd.1630981

Öz

Atıksu arıtma tesislerinin işletilmesinde en önemli problemlerden biri de aktif çamur sisteminin yönetimi en büyük problemlerden biridir. Sonuç olarak, büyük miktardaki çamur sorununu çözmek için son yıllarda çamur minimizasyonu kavramı kapsamlı bir şekilde çalışılmıştır. Sorunun çözümü için kullanılan birkaç geleneksel yönteme ek olarak, bazı yeni teknikler de geliştirilme aşamasındadır. Bu tekniklerden biri, insan kulağının duyabileceği frekans aralığının üzerinde geniş bir frekans aralığında üretilen ses dalgaları olarak tanımlanan ultrason yöntemidir. Literatürde küçük kavitasyon baloncukları sayesinde atıksu arıtımında fiziksel, kimyasal ve biyolojik süreçlerin verimliliğinin arttırıldığı gösterilmiştir. Ultrasonik radyasyonun etkinliğini belirlemek için, farklı ultrasonik yoğunluğa farklı sürelerde maruz bırakılan aktif çamur örnekleri üzerinde pH, toplam katı madde (TS), uçucu toplam katı madde (TVS), çözünmüş kimyasal oksijen ihtiyacı (DCOD), diferansiyel çözünmüş kimyasal oksijen ihtiyacı (DDCOD) ve reolojik ölçümler yapılmıştır. Örnekler ultrasonik radyasyona maruz bırakıldıktan sonra her 24 saatte bir biyogaz ölçümleri gerçekleştirilerek 25 °C ve 35 °C’de 2 farklı anaerobik reaktör olarak 30 gün boyunca işletilmiştir.Sonuçlar ultrasonik güç ve sürenin artması ile birlikde DCOD ve DDCOD’nin sırasıyla %27 ve %58 oranında arttığını TS ve TVS %21 ve %30 oranında azaldığını göstermiştir. Sonuç olarak; ultrasonik kavitasyon etkisiyle anaerobik reaktörlerde TS, TVS ve DCOD giderimi ile biyogaz oluşumu ham aktif çamurun karakteristiğine bağlı olarak artmıştır.

Proje Numarası

Project No. 2375-YL-10

Kaynakça

  • Chu, C. P., Lee, D. J., Chang, B. V., You, C. S., & Tay, J. H. (2002). Weak ultrasonic pretreatment on anaerobic digestion of flocculated activated biosolids. Water Research, 36(11), 2681–2688. https://doi.org/10.1016/S0043-1354(01)00519-9
  • Civelekoglu, G., Yiğit, N. Ö., Kitiş, M., Nickel, K., & Neis, U. (2007). Ultrasound technology applications in water and wastewater treatment. In National Environment Symposium Proceedings (pp. 18–21). Mersin, Turkey.
  • Demir Ö. (2016). Effects of Potassium Permanganate on Sludge Disintegration and Improving with Ultrasonic Pre-treatment. (2016). Uludag University Faculty of Engineering Journal, 21, 189-200.
  • Demir Ö., & Günes E. (2016). Sludge Treatment and Electricity Generation with Microbial Fuel Cells. Sinop Uni. J. Nat. Sci. 1(2): 81 – 89.
  • Edgar, F. C. M., Cristancho, D. E., & Arellano, A. V. (2006). Study of the operational conditions for anaerobic digestion of urban solid wastes. Waste Management, 26(5), 546–556. https://doi.org/10.1016/j.wasman.2005.06.010
  • Erden, G., & Filibeli A. (2010). Ultrasonic pre-treatment of treatment plant sludge itü dergisi su kirlenmesi kontrolü 20, 39-48.
  • Ferrasse, J. H., & Roche, N. (2003). State-of-the-art: Rheological characterization of wastewater treatment sludge. Biochemical Engineering Journal, 16(1), 41–56. https://doi.org/10.1016/S1369-703X(03)00021-4
  • Filibeli A., & Erden, G. (2006). Pretreatment processes applied to decrease quantity and to improve dewatering properties of treatment plant sludge. İtü dergisi/e su kirlenmesi kontrolü 16,3-12.
  • Friedler, E., & Pisanty, E. (2006). Effects of design flow and treatment level on construction and operation costs of municipal wastewater treatment plants and their implications on policy making. Water Research, 40(20), 3751–3758. https://doi.org/10.1016/j.watres.2006.08.022
  • Hall, J. E. (1995). Sewage sludge production, treatment and disposal in the European Union. Journal of the Chartered Institution of Water and Environmental Management, 9, 335–343.
  • Moumeni, O., Hamdaoui, O., & Petrier, C. (2012). Sonochemical degradation of malachite green in water. Chemical Engineering and Processing, 62, 47–53. https://doi.org/10.1016/j.cep.2012.06.001 Naddeo, V., Belgiorno, V., Landi, M., Zara, T., & Napoli, R. M. A. (2009). Effect of sonolysis on waste activated sludge solubilisation and anaerobic biodegradability. Desalination, 249, 762–767. https://doi.org/10.1016/j.desal.2008.09.018 Neis, U. (2000). Ultrasound in water, wastewater and sludge treatment. Water, 21(4–2), 36–39.
  • Neis, U., Nickel, K., & Tiehm, A. (2000). Enhancement of anaerobic sludge digestion by ultrasonic disintegration. Water Science and Technology, 42(9), 73–80. https://doi.org/10.1016/S0273-1223(00)00532-1
  • Nguyen, D. D., Yoon, Y. S., Nguyen, N. D., Bach, Q. V., Bui, X. T., Chang, S. W., Le, H., Guo, S., Huu, W., Hao, H., & Ngo, H. (2017). Enhanced efficiency for better wastewater sludge hydrolysis conversion through ultrasonic hydrolytic pretreatment. Journal of the Taiwan Institute of Chemical Engineers, 71, 244–252. https://doi.org/10.1016/j.jtice.2017.02.011
  • Salsabil, M. R., Prorot, A., Casellas, M., & Dagot, C. (2009). Pre-treatment of activated sludge: Effect of sonication on aerobic and anaerobic digestibility. Chemical Engineering Journal, 148, 327–335. https://doi.org/10.1016/j.cej.2008.09.033
  • Sahinkaya, S. (2015). Disintegration of municipal waste activated sludge by simultaneous combination of acid and ultrasonic pretreatment. Process Safety and Environmental Protection, 93, 201–205. https://doi.org/10.1016/j.psep.2015.02.001
  • Shimizu, T., Kudo, K., & Nasu, Y. (1993). Anaerobic waste activated sludge digestion: A bioconversion and kinetic model. Biotechnology and Bioengineering, 41, 1082–1091. https://doi.org/10.1002/bit.260411008 Tiehm, A., Nickel, K., Zellhorn, M., & Neis, U. (2001). Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Research, 35(8), 123–130. https://doi.org/10.1016/S0043-1354(00)00592-4
  • Wang, R., Liu, J., Hu, Y., Zhou, J., & Cen, K. (2014). Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge. Fuel Processing Technology, 25, 94–105. https://doi.org/10.1016/j.fuproc.2013.12.012
  • Zhao, F., & Cheng, D. (2017). Changes in pore size distribution inside sludge under various ultrasonic conditions. Ultrasonics Sonochemistry, 38, 390–401. https://doi.org/10.1016/j.ultsonch.2017.02.006
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Jeomatik Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Bahar İkizoğlu 0000-0002-6654-7303

Gökhan Civelekoğlu 0000-0001-5508-1918

Proje Numarası Project No. 2375-YL-10
Yayımlanma Tarihi 24 Mart 2025
Gönderilme Tarihi 1 Şubat 2025
Kabul Tarihi 19 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA İkizoğlu, B., & Civelekoğlu, G. (2025). Effects of Low Frequency Ultrasonic Irradition on the Anaerobic Sludge Treatment Process. Uluborlu Mesleki Bilimler Dergisi, 8(1), 53-65. https://doi.org/10.71445/umbd.1630981
Creative Commons Lisansı
Isparta Uygulamalı Bilimler Üniversitesi Uluborlu Mesleki Bilimler Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.