Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüzen Güneş Enerji Santraliyle Hidroelektrik Santrallerin Hibrit Çalışması: Menzelet Barajı Örneği

Yıl 2025, Cilt: 7 Sayı: 2, 125 - 138, 31.12.2025
https://doi.org/10.55440/umufed.1832710

Öz

Elektrik enerji talebinin karşılanmasında yenilenebilir enerji santrallerinin payının arttırılması küresel ısınmanın azaltılması açısından önem arz etmektedir. Hidroelektrik santraller (HES) ve Güneş Enerji Santralleri (GES) bu yenilenebilir enerji santrallerinin en önemlilerindendir. GES’lerin su yüzeyine kurulanları Yüzen GES (YGES) olarak adlandırılmaktadır. Su kaynaklarındaki azalmalar, gelecek yıllarda HES’lerin enerji üretimindeki payında azalma yaşanabileceği gerçeğini ortaya çıkarmıştır. YGES’ler ile suyun buharlaşmasını azaltmak ve HES’lerin elektrik şebeke altyapısını kullanarak YGES’ten elde edilen enerjiyi taşımak için HES-YGES hibrit sistemleri son yıllarda popüler hale gelmiştir. Bu çalışmada Kahramanmaraş’ta bulunan Menzelet HES ile bu HES’in rezervuarı üzerine kurulan YGES’in hibrit çalışması fikri ele alınmıştır. Bu YGES’in kurulu gücü Menzelet HES’in kurulu gücü olan 124 MW olarak seçilmiştir. YGES PVsyst yazılımı kullanılarak tasarlanmıştır. Çalışma sonunda; YGES’in yıllık 250.7 GWs enerji ürettiği, 1,515,349 m3 suyun buharlaşmasını ve 151,197.17 ton CO2 salınımını önlediği, amortisman süresinin yaklaşık 3.1 yıl olduğu görülmüştür. Ayrıca HES’ler ile hibrit çalışan YGES’in kurulum maliyetinin HES’lerden bağımsız çalışan YGES’lere göre daha düşük olduğu sonucuna varılmıştır.

Kaynakça

  • [1] N. L. Panwar, S. C. Kaushik, and S. Kothari, “Role of renewable energy sources in environmental protection: A review,” Renewable and sustainable energy reviews, vol. 15, no. 3, pp. 1513–1524, 2011.
  • [2] A. G. Olabi, and M. A. Abdelkareem, “Renewable energy and climate change,” Renewable and Sustainable Energy Reviews, vol. 158, 2022.
  • [3] "International Energy Agency (IEA)," November 22, 2025; https://www.iea.org/energy-system/renewables.
  • [4] A. El Hammoumi, S. Chtita, S. Motahhir, and A. El Ghzizal, “Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels,” Energy Reports, vol. 8, pp. 11992–12010, 2022.
  • [5] A. S. Saand, M. I. Jamali, M. A. Koondhar, G. S. Kaloi, L. Albasha, M. Aoudia, and E. Touti, “A comparative review: floating photovoltaic, agrivoltaics, and ground-mounted PV systems,” IEEE Access, vol. 13, pp. 45853–45873, 2025.
  • [6] K. Anusuya, and K. Vijayakumar, “A comparative study of floating and ground-mounted photovoltaic power generation in Indian contexts,” Cleaner Energy Systems, vol. 9, pp. 100140, 2024.
  • [7] M. A. Koondhar, L. Albasha, I. Mahariq, B. B. Graba, and E. Touti, “Reviewing floating photovoltaic (FPV) technology for solar energy generation,” Energy Strategy Reviews, vol. 54, pp. 101449, 2024.
  • [8] G. Liu, J. Guo, H. Peng, H. Ping, and Q. Ma, “Review of recent offshore floating photovoltaic systems,” Journal of Marine Science and Engineering, vol. 12, no. 11, pp. 1942, 2024.
  • [9] S. Fan, Z. Ma, T. Liu, C. Zheng, and H. Wang, “Innovations and development trends in offshore floating photovoltaic systems: A comprehensive review,” Energy Reports, vol. 13, pp. 1950–1958, 2025.
  • [10] Y. Yao, X. Yang, S. Shao, J. Lian, X. Yan, and X. Zhang, “Optimization and assessment of membrane-type floating photovoltaic (FPV) systems,” Energy, pp. 138783, 2025.
  • [11] K. Debnath, C.-C. Hsieh, C.-Y. Huang, J. Barman, and C.-F. J. Kuo, “Experimental investigation and economic evaluation of wind impacts on the solar panel array of a floating photovoltaic (FPV) system across different turbulence intensities,” Energy Nexus, vol. 17, pp. 100380, 2025.
  • [12] M. Tekin, and A. Kadirlioğlu, “Meeting the Power Demand in the Microgrids of University Campuses by Floating Photovoltaic,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, pp. 1–16, 2025.
  • [13] J. J. Gonzalez-Gonzalez, J. P. Arenas-López, and M. Badaoui, “Advancing towards zero emissions: Integrating floating photovoltaic systems in hydroelectric power plant reservoirs,” Results in Engineering, vol. 23, pp. 102742, 2024.
  • [14] A. Oymak, I. H. Demirel, and M. R. Tur, “Conversion of reservoir dams to pumped storage dams: A case study Batman Dam,” Journal of Energy Storage, vol. 95, pp. 112417, 2024.
  • [15] M. J. B. Kabeyi, and O. A. Olanrewaju, "Hydroelectric power plants and their sustainability," Advances in Hydropower Technologies: IntechOpen, 2025.
  • [16] F. Piancó, L. Moraes, I. dos Prazeres, A. G. G. Lima, J. G. Bessa, L. Micheli, E. Fernández, and F. Almonacid, “Hydroelectric operation for hybridization with a floating photovoltaic plant: A case of study,” Renewable Energy, vol. 201, pp. 85–95, 2022.
  • [17] N. Lee, U. Grunwald, E. Rosenlieb, H. Mirletz, A. Aznar, R. Spencer, and S. Cox, “Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential,” Renewable Energy, vol. 162, pp. 1415–1427, 2020.
  • [18] O.-I. Bratu, E.-I. Tică, A. Neagoe, and B. Popa, “Hydropower–FPV Hybridization for Sustainable Energy Generation in Romania,” Water, vol. 17, no. 21, pp. 3144, 2025.
  • [19] C. D. Rodríguez-Gallegos, O. Gandhi, C. A. Rodríguez-Gallegos, and M. S. Alvarez-Alvarado, "Co-Location Potential of Floating PV with Hydropower Plants: Case Study in Ecuador." Solar, vol. 5, no. 1:3, 2025.
  • [20] A. A. Mehadi, Nahin-Al-Khurram, M. R. K. Shagor, and M. A. I. Sarder, “Optimized seasonal performance analysis and integrated operation of 50MW floating solar photovoltaic system with Kaptai hydroelectric power plant: a case study,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 47, no. 1, pp. 10183–10207, 2025.
  • [21] V. Olkkonen, K. Haaskjold, Ø. S. Klyve, and R. Skartlien, “Techno-economic feasibility of hybrid hydro-FPV systems in Sub-Saharan Africa under different market conditions,” Renewable Energy, vol. 215, pp. 118981, 2023.
  • [22] S. Hekmat, and S. Kurtz, "Exploring the Synergy of Floating Photovoltaic Systems and Hydropower in California's Reservoirs." pp. 1587–1590.
  • [23] W. Arnold, M. Giuliani, and A. Castelletti, “Floating photovoltaics may reduce the risk of hydro-dominated energy development in Africa,” Nature Energy, vol. 9, no. 5, pp. 602–611, 2024.
  • [24] S. Sisomboune, W. Wongsapai, and K. Ngamsanroaj, “Management of Hybrid Hydropower and Floating Solar Systems at Num Ngum 1 in Lao PDR,” 2024.
  • [25] "Kahramanmaraş Hidroelektrik Santraller," Kasım, 2025; https://www.enerjiatlasi.com/hes-haritasi/kahramanmaras.
  • [26] "Menzelet Barajı ve HES Görseli," Kasım, 2025; https://www.facebook.com/dsidestekhizmetleri/photos/kahramanmara%C5%9F-menzelet-baraj%C4%B1-ve-hes-ceyhan-nehri-%C3%BCzerinde-kurulu-ve-temelden-y%C3%BC/626220304416373/.
  • [27] "Menzelet Barajı ve Hidroelektrik Santrali (HES)," Kasım, 2025; https://www.enerjiatlasi.com/hidroelektrik/menzelet-baraji.html.
  • [28] A. P. Sukarso, and K. N. Kim, “Cooling effect on the floating solar PV: Performance and economic analysis on the case of west Java province in Indonesia,” Energies, vol. 13, no. 9, pp. 2126, 2020.
  • [29] P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, “Advanced cooling techniques of PV modules: A state of art,” Case studies in thermal engineering, vol. 21, pp. 100674, 2020.
  • [30] H. Ertaş, O. Ceylan, and K. Çelik, “Güneş paneli yüzeyi temizleme cihazi tasarımı, uygulaması ve farklı bir yaklaşım ile veriminin karşılaştırılması.” III. Uluslararası Mesleki ve Teknik Bilimler Kongresi, 21 Haziran 2018, Gaziantep, Türkiye.
  • [31] L. W. Farrar, A. S. Bahaj, P. James, A. Anwar, and N. Amdar, “Floating solar PV to reduce water evaporation in water stressed regions and powering water pumping: Case study Jordan,” Energy Conversion and Management, vol. 260, pp. 115598, 2022.
  • [32] M. I. Kulat, K. Tosun, A. B. Karaveli, I. Yucel, and B. G. Akinoglu, “A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey,” Renewable Energy, vol. 206, pp. 694–709, 2023.
  • [33] A. B. Karaveli, “Nuclear energy versus solar energy (Nuke vs. PV): The comparison of their economic feasibilities and environmental aspects for Turkey,” Middle East Technical University (Turkey), 2014.

Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam

Yıl 2025, Cilt: 7 Sayı: 2, 125 - 138, 31.12.2025
https://doi.org/10.55440/umufed.1832710

Öz

It is important to increase the contribution of renewable energy plants in meeting electricity demand in order to decrease global warming. Hydroelectric power plants (HPPs) and solar power plants (SPPs) are two of the most important types of renewable energy plants. SPPs installed on the water surface are called Floating PV (FPV). The decline in water resources has revealed the fact that the ratio of HPPs in energy generation may decrease in the coming years. HPP-FPV hybrid systems have become popular in recent years to reduce water evaporation with FPV and to transport the energy generated from FPV using the HPP’s electricity grid infrastructure. This study focuses on the issue of hybrid utilization of the Menzelet HPP built in Kahramanmaraş and the FPV installed on the reservoir of this HPP. The installed capacity of this FPV has been selected as 124 MW, which is the installed capacity of the Menzelet HPP. FPV was designed using PVsyst software. At the end of the study, it was observed that FPV generated 250.7 GWh of energy annually, prevented the evaporation of 1,515,349 m3 of water and the emission of 151,197.17 tons of CO2, and had a payback period of approximately 3.1 years. It has also been concluded that the installation cost of FPV utilizing with HPP in a hybrid configuration is lower compared to FPV operating independently of HPP.

Kaynakça

  • [1] N. L. Panwar, S. C. Kaushik, and S. Kothari, “Role of renewable energy sources in environmental protection: A review,” Renewable and sustainable energy reviews, vol. 15, no. 3, pp. 1513–1524, 2011.
  • [2] A. G. Olabi, and M. A. Abdelkareem, “Renewable energy and climate change,” Renewable and Sustainable Energy Reviews, vol. 158, 2022.
  • [3] "International Energy Agency (IEA)," November 22, 2025; https://www.iea.org/energy-system/renewables.
  • [4] A. El Hammoumi, S. Chtita, S. Motahhir, and A. El Ghzizal, “Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels,” Energy Reports, vol. 8, pp. 11992–12010, 2022.
  • [5] A. S. Saand, M. I. Jamali, M. A. Koondhar, G. S. Kaloi, L. Albasha, M. Aoudia, and E. Touti, “A comparative review: floating photovoltaic, agrivoltaics, and ground-mounted PV systems,” IEEE Access, vol. 13, pp. 45853–45873, 2025.
  • [6] K. Anusuya, and K. Vijayakumar, “A comparative study of floating and ground-mounted photovoltaic power generation in Indian contexts,” Cleaner Energy Systems, vol. 9, pp. 100140, 2024.
  • [7] M. A. Koondhar, L. Albasha, I. Mahariq, B. B. Graba, and E. Touti, “Reviewing floating photovoltaic (FPV) technology for solar energy generation,” Energy Strategy Reviews, vol. 54, pp. 101449, 2024.
  • [8] G. Liu, J. Guo, H. Peng, H. Ping, and Q. Ma, “Review of recent offshore floating photovoltaic systems,” Journal of Marine Science and Engineering, vol. 12, no. 11, pp. 1942, 2024.
  • [9] S. Fan, Z. Ma, T. Liu, C. Zheng, and H. Wang, “Innovations and development trends in offshore floating photovoltaic systems: A comprehensive review,” Energy Reports, vol. 13, pp. 1950–1958, 2025.
  • [10] Y. Yao, X. Yang, S. Shao, J. Lian, X. Yan, and X. Zhang, “Optimization and assessment of membrane-type floating photovoltaic (FPV) systems,” Energy, pp. 138783, 2025.
  • [11] K. Debnath, C.-C. Hsieh, C.-Y. Huang, J. Barman, and C.-F. J. Kuo, “Experimental investigation and economic evaluation of wind impacts on the solar panel array of a floating photovoltaic (FPV) system across different turbulence intensities,” Energy Nexus, vol. 17, pp. 100380, 2025.
  • [12] M. Tekin, and A. Kadirlioğlu, “Meeting the Power Demand in the Microgrids of University Campuses by Floating Photovoltaic,” Iranian Journal of Science and Technology, Transactions of Electrical Engineering, pp. 1–16, 2025.
  • [13] J. J. Gonzalez-Gonzalez, J. P. Arenas-López, and M. Badaoui, “Advancing towards zero emissions: Integrating floating photovoltaic systems in hydroelectric power plant reservoirs,” Results in Engineering, vol. 23, pp. 102742, 2024.
  • [14] A. Oymak, I. H. Demirel, and M. R. Tur, “Conversion of reservoir dams to pumped storage dams: A case study Batman Dam,” Journal of Energy Storage, vol. 95, pp. 112417, 2024.
  • [15] M. J. B. Kabeyi, and O. A. Olanrewaju, "Hydroelectric power plants and their sustainability," Advances in Hydropower Technologies: IntechOpen, 2025.
  • [16] F. Piancó, L. Moraes, I. dos Prazeres, A. G. G. Lima, J. G. Bessa, L. Micheli, E. Fernández, and F. Almonacid, “Hydroelectric operation for hybridization with a floating photovoltaic plant: A case of study,” Renewable Energy, vol. 201, pp. 85–95, 2022.
  • [17] N. Lee, U. Grunwald, E. Rosenlieb, H. Mirletz, A. Aznar, R. Spencer, and S. Cox, “Hybrid floating solar photovoltaics-hydropower systems: Benefits and global assessment of technical potential,” Renewable Energy, vol. 162, pp. 1415–1427, 2020.
  • [18] O.-I. Bratu, E.-I. Tică, A. Neagoe, and B. Popa, “Hydropower–FPV Hybridization for Sustainable Energy Generation in Romania,” Water, vol. 17, no. 21, pp. 3144, 2025.
  • [19] C. D. Rodríguez-Gallegos, O. Gandhi, C. A. Rodríguez-Gallegos, and M. S. Alvarez-Alvarado, "Co-Location Potential of Floating PV with Hydropower Plants: Case Study in Ecuador." Solar, vol. 5, no. 1:3, 2025.
  • [20] A. A. Mehadi, Nahin-Al-Khurram, M. R. K. Shagor, and M. A. I. Sarder, “Optimized seasonal performance analysis and integrated operation of 50MW floating solar photovoltaic system with Kaptai hydroelectric power plant: a case study,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 47, no. 1, pp. 10183–10207, 2025.
  • [21] V. Olkkonen, K. Haaskjold, Ø. S. Klyve, and R. Skartlien, “Techno-economic feasibility of hybrid hydro-FPV systems in Sub-Saharan Africa under different market conditions,” Renewable Energy, vol. 215, pp. 118981, 2023.
  • [22] S. Hekmat, and S. Kurtz, "Exploring the Synergy of Floating Photovoltaic Systems and Hydropower in California's Reservoirs." pp. 1587–1590.
  • [23] W. Arnold, M. Giuliani, and A. Castelletti, “Floating photovoltaics may reduce the risk of hydro-dominated energy development in Africa,” Nature Energy, vol. 9, no. 5, pp. 602–611, 2024.
  • [24] S. Sisomboune, W. Wongsapai, and K. Ngamsanroaj, “Management of Hybrid Hydropower and Floating Solar Systems at Num Ngum 1 in Lao PDR,” 2024.
  • [25] "Kahramanmaraş Hidroelektrik Santraller," Kasım, 2025; https://www.enerjiatlasi.com/hes-haritasi/kahramanmaras.
  • [26] "Menzelet Barajı ve HES Görseli," Kasım, 2025; https://www.facebook.com/dsidestekhizmetleri/photos/kahramanmara%C5%9F-menzelet-baraj%C4%B1-ve-hes-ceyhan-nehri-%C3%BCzerinde-kurulu-ve-temelden-y%C3%BC/626220304416373/.
  • [27] "Menzelet Barajı ve Hidroelektrik Santrali (HES)," Kasım, 2025; https://www.enerjiatlasi.com/hidroelektrik/menzelet-baraji.html.
  • [28] A. P. Sukarso, and K. N. Kim, “Cooling effect on the floating solar PV: Performance and economic analysis on the case of west Java province in Indonesia,” Energies, vol. 13, no. 9, pp. 2126, 2020.
  • [29] P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, “Advanced cooling techniques of PV modules: A state of art,” Case studies in thermal engineering, vol. 21, pp. 100674, 2020.
  • [30] H. Ertaş, O. Ceylan, and K. Çelik, “Güneş paneli yüzeyi temizleme cihazi tasarımı, uygulaması ve farklı bir yaklaşım ile veriminin karşılaştırılması.” III. Uluslararası Mesleki ve Teknik Bilimler Kongresi, 21 Haziran 2018, Gaziantep, Türkiye.
  • [31] L. W. Farrar, A. S. Bahaj, P. James, A. Anwar, and N. Amdar, “Floating solar PV to reduce water evaporation in water stressed regions and powering water pumping: Case study Jordan,” Energy Conversion and Management, vol. 260, pp. 115598, 2022.
  • [32] M. I. Kulat, K. Tosun, A. B. Karaveli, I. Yucel, and B. G. Akinoglu, “A sound potential against energy dependency and climate change challenges: Floating photovoltaics on water reservoirs of Turkey,” Renewable Energy, vol. 206, pp. 694–709, 2023.
  • [33] A. B. Karaveli, “Nuclear energy versus solar energy (Nuke vs. PV): The comparison of their economic feasibilities and environmental aspects for Turkey,” Middle East Technical University (Turkey), 2014.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fotovoltaik Güç Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Tekin 0000-0002-8682-411X

Gönderilme Tarihi 30 Kasım 2025
Kabul Tarihi 17 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Tekin, M. (2025). Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi, 7(2), 125-138. https://doi.org/10.55440/umufed.1832710
AMA 1.Tekin M. Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam. UMÜFED. 2025;7(2):125-138. doi:10.55440/umufed.1832710
Chicago Tekin, Mustafa. 2025. “Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7 (2): 125-38. https://doi.org/10.55440/umufed.1832710.
EndNote Tekin M (01 Aralık 2025) Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7 2 125–138.
IEEE [1]M. Tekin, “Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam”, UMÜFED, c. 7, sy 2, ss. 125–138, Ara. 2025, doi: 10.55440/umufed.1832710.
ISNAD Tekin, Mustafa. “Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7/2 (01 Aralık 2025): 125-138. https://doi.org/10.55440/umufed.1832710.
JAMA 1.Tekin M. Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam. UMÜFED. 2025;7:125–138.
MLA Tekin, Mustafa. “Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi, c. 7, sy 2, Aralık 2025, ss. 125-38, doi:10.55440/umufed.1832710.
Vancouver 1.Tekin M. Hybrid Operation of Floating PV and Hydroelectric Power Plant: The Case of Menzelet Dam. UMÜFED [Internet]. 01 Aralık 2025;7(2):125-38. Erişim adresi: https://izlik.org/JA93TZ76BR