Araştırma Makalesi
BibTex RIS Kaynak Göster

YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ

Yıl 2025, Cilt: 7 Sayı: 2, 139 - 158, 31.12.2025
Bu makale için 4 Ocak 2026 tarihinde bir düzeltme yayımlandı. https://dergipark.org.tr/tr/pub/umufed/article/1855652

Öz

Elektrikli araçların (EA) yaygınlaşması çevresel sürdürülebilirliği desteklerken, artan şarj talebi elektrik şebekesi üzerinde kapasite ve kararlılık açısından yeni zorluklar oluşturmaktadır. Ayrıca fotovoltaik (PV) gibi yenilenebilir enerji kaynaklarının kesintili yapısı, enerji yönetimini daha karmaşık hale getirmektedir. Bu çalışmada, PV destekli ve şebeke ile çift yönlü çalışabilen bir EA şarj istasyonu tasarlanmış ve araçtan şebekeye enerji transferi (V2G) yeteneği incelenmiştir. Geliştirilen sistemde, PV üretiminin yeterli olduğu durumlarda batarya yenilenebilir kaynaktan şarj edilirken, üretimin yetersiz olduğu koşullarda şebeke desteği devreye alınmaktadır. Ayrıca bataryanın uygun doluluk oranlarında (SOC) şebekeye güç aktarımı sağlanarak V2G işlevi gerçekleştirilmiştir. Sistem yönetimi, SOC ve PV üretim parametrelerini esas alan bir karar kontrol mekanizması ile otomatikleştirilmiştir. Sonuçlar, önerilen yapının enerji yönetimini etkin biçimde sağladığını ve şebeke esnekliğine katkıda bulunduğunu göstermektedir.

Etik Beyan

Bu çalışma, insan veya hayvan denekleri üzerinde herhangi bir deney içermemektedir.Araştırma ve yayın etiğine uyulmuştur.

Destekleyen Kurum

Bu çalışma herhangi bir kurum veya kuruluş tarafından desteklenmemiştir.

Teşekkür

Bu çalışmanın yürütülmesi sürecinde sağladığı katkılar için danışman hocam Dr. Öğr. Üyesi Erdal KILIÇ'a teşekkür ederim.

Kaynakça

  • Armenta-Déu, C., & Demas, L. (2024). Optimization of grid energy balance using vehicle-to-grid network system. Energies, 17(5), 1008. https://doi.org/10.3390/en17051008
  • Asaad, M. E., Zamora, R., & Lie, T. (2020). Integration of electric vehicles in the distribution network: A review of PV based electric vehicle modelling. Energies, 13(17), 4541. https://doi.org/10.3390/en13174541
  • Attou, N., Zidi, S., Khatir, M., & Hadjeri, S. (2021). Energy management system for hybrid microgrids. Electrotehnica Electronica Automatica, 69(2), 21–30. https://doi.org/10.46904/eea.21.69.2.1108003
  • Castellanos, J., Rajan, H., Rohde, A., Denhof, D., & Freitag, M. (2019). Design and simulation of a control algorithm for peak-load shaving using vehicle to grid technology. SN Applied Sciences, 1(9). https://doi.org/10.1007/s42452-019-0999-x
  • Cheikh-Mohamad, S., Celik, B., Sechilariu, M., & Locment, F. (2023). Pv-powered charging station with energy cost optimization via v2g services. Applied Sciences, 13(9), 5627. https://doi.org/10.3390/app13095627
  • Deeum, S., Charoenchan, T., Janjamraj, N., Romphochai, S., Baum, S., Ohgaki, H., ... & Bhumkittipich, K. (2023). Optimal placement of electric vehicle charging stations in an active distribution grid with photovoltaic and battery energy storage system integration. Energies, 16(22), 7628. https://doi.org/10.3390/en16227628
  • Eltamaly, A. M. (2023). Optimal dispatch strategy for electric vehicles in v2g applications. Smart Cities, 6(6), 3161–3191. https://doi.org/10.3390/smartcities6060141
  • Esfahani, F., Darwish, A., & Williams, B. (2022). Power converter topologies for grid-tied solar photovoltaic (pv) powered electric vehicles (evs)—A comprehensive review. Energies, 15(13), 4648. https://doi.org/10.3390/en15134648
  • Fulari, S., & Kaa, G. V. D. (2021). Overcoming bottlenecks for realizing a vehicle-to-grid infrastructure in europe through standardization. Electronics, 10(5), 582. https://doi.org/10.3390/electronics10050582
  • Gagangras, A., Manshadi, S. D., & Soofi, A. (2023). Zero-carbon ac/dc microgrid planning by leveraging vehicle-to-grid technologies. Energies, 16(18), 6446. https://doi.org/10.3390/en16186446
  • Giordano, F. M., Diaz-Londono, C., & Gruosso, G. (2023). Comprehensive aggregator methodology for evs in v2g operations and electricity markets. IEEE Open Journal of Vehicular Technology, 4, 809–819. https://doi.org/10.1109/ojvt.2023.3323087
  • Gowda, S., Eraqi, B., Nazaripouya, H., & Gadh, R. (2021). Assessment and tracking electric vehicle battery degradation cost using blockchain. In 2021 IEEE International Conference on Smart Grid Technology (ISGT) (pp. 1–5). https://doi.org/10.1109/isgt49243.2021.9372218
  • Güngör, İ. (2025). Yenilenebilir enerji destekli elektrikli araç şarj i̇stasyonu ve şebekeye geri besleme (V2G) entegrasyonu (Yayınlanmamış yüksek lisans tezi, KSÜ, Fen Bilimleri Enstitüsü, Kahramanmaraş, 2025.) Hosseini, S. H., Ghazi, R., & Heydari‐doostabad, H. (2021). An extendable quadratic bidirectional dc–dc converter for v2g and g2v applications. IEEE Transactions on Industrial Electronics, 68(6), 4859–4869. https://doi.org/10.1109/tie.2020.2992967
  • İnci, M., Çelik, Ö., Lashab, A. M., Bayındır, K. Ç., Vásquez, J. C., & Guerrero, J. M. (2024). Power system integration of electric vehicles: A review on impacts and contributions to the smart grid. Applied Sciences, 14(6), 2246. https://doi.org/10.3390/app14062246
  • Lenka, R. K., Panda, A. K., Patel, R. N., & Guerrero, J. M. (2022). Pv integrated multifunctional off-board ev charger with improved grid power quality. IEEE Transactions on Industry Applications, 58(5), 5520–5532. https://doi.org/10.1109/tia.2022.3167659
  • Mao, T., Zhang, X., & Zhou, B. (2018). Modeling and solving method for supporting ‘vehicle-to-anything’ ev charging mode. Applied Sciences, 8(7), 1048. https://doi.org/10.3390/app8071048
  • Martin, X., Escoto, M., Guerrero, A., & Juan, À. (2024). Battery management in electric vehicle routing problems: A review. Energies, 17(5), 1141. https://doi.org/10.3390/en17051141
  • Monteiro, V., Pinto, J. G., & Afonso, J. L. (2018). Experimental validation of a three-port integrated topology to interface electric vehicles and renewables with the electrical grid. IEEE Transactions on Industrial Informatics, 14(6), 2364–2374. https://doi.org/10.1109/tii.2018.2818174
  • Mouli, G. R. C., Schijffelen, J., Heuvel, M., Kardolus, M., & Bauer, P. (2019). A 10 kw solar-powered bidirectional ev charger compatible with chademo and combo. IEEE Transactions on Power Electronics, 34(2), 1082–1098. https://doi.org/10.1109/tpel.2018.2829211
  • Nordin, A., & Sazali, N. (2022). A study of mppt charge controller roles in photovoltaic energy management. Emerging Advances in Integrated Technology, 3(1). https://doi.org/10.30880/emait.2022.03.01.004
  • Pan, W., Yu, X., Guo, Z., Qian, T., & Li, Y. (2024). Online evs vehicle-to-grid scheduling coordinated with multi-energy microgrids: A deep reinforcement learning-based approach. Energies, 17(11), 2491. https://doi.org/10.3390/en17112491
  • Pinto, J. G., Monteiro, V., Gonçalves, H., Exposto, B., Pedrosa, D., Couto, C., ... & Afonso, J. L. (2013). Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies. In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society (pp. 5934–5939). https://doi.org/10.1109/iecon.2013.6700108
  • Rani, G. L., Priya, P. M., Jayan, J., Satheesh, R. K., & Kolhe, M. (2024). Data-driven energy management of an electric vehicle charging station using deep reinforcement learning. IEEE Access, 12, 65956–65966. https://doi.org/10.1109/access.2024.3398059
  • Safayatullah, M., Elrais, M., Ghosh, S., Rezaii, R., & Batarseh, I. (2022). A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications. IEEE Access, 10, 40753–40793. https://doi.org/10.1109/access.2022.3166935
  • Shi, L., Lv, T., & Wang, Y. (2018). Vehicle-to-grid service development logic and management formulation. Journal of Modern Power Systems and Clean Energy, 7(4), 935–947. https://doi.org/10.1007/s40565-018-0464-7 Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable and Sustainable Energy Reviews, 53, 720–732. https://doi.org/10.1016/j.rser.2015.09.012
  • Valdmanis, G., Rieksta, M., Luksta, I., & Bažbauers, G. (2022). Solar energy based charging for electric vehicles at fuel stations. Environmental and Climate Technologies, 26(1), 1169–1181. https://doi.org/10.2478/rtuect-2022-0088

SIMULATION-BASED DESIGN AND ANALYSIS OF A RENEWABLE ENERGY-SUPPORTED BID-WAY ELECTRIC VEHICLE CHARGING SYSTEM

Yıl 2025, Cilt: 7 Sayı: 2, 139 - 158, 31.12.2025
Bu makale için 4 Ocak 2026 tarihinde bir düzeltme yayımlandı. https://dergipark.org.tr/tr/pub/umufed/article/1855652

Öz

With the increase in urbanization, the use of metro lines as an underground transportation system has become significantly widespread. This situation necessitates the consideration of the potential effects of new constructions on tunnel systems in areas where metro lines are located. In this study, the effects of structures and shoring systems to be constructed near the M9 Ataköy-İkitelli Metro Line on the existing tunnel system were examined statically. Numerical analysis methods were employed, taking into account soil conditions and structural loads. The impact of the buildings on tunnel deformations and structural stress distributions was evaluated. The analysis results indicate that the presence of buildings does not cause significant displacements in the metro tunnels or tunnel segment linings. Nevertheless, applying similar analysis approaches to all constructions near metro lines is of critical importance for developing construction strategies that do not compromise the safety of metro tunnels.

Etik Beyan

This study does not involve any experiments on human or animal subjects. Research and publication ethics have been followed.

Destekleyen Kurum

This study was not supported by any institution or organization.

Teşekkür

I would like to thank my advisor, Dr. Erdal KILIÇ, for his contributions to the conduct of this study.

Kaynakça

  • Armenta-Déu, C., & Demas, L. (2024). Optimization of grid energy balance using vehicle-to-grid network system. Energies, 17(5), 1008. https://doi.org/10.3390/en17051008
  • Asaad, M. E., Zamora, R., & Lie, T. (2020). Integration of electric vehicles in the distribution network: A review of PV based electric vehicle modelling. Energies, 13(17), 4541. https://doi.org/10.3390/en13174541
  • Attou, N., Zidi, S., Khatir, M., & Hadjeri, S. (2021). Energy management system for hybrid microgrids. Electrotehnica Electronica Automatica, 69(2), 21–30. https://doi.org/10.46904/eea.21.69.2.1108003
  • Castellanos, J., Rajan, H., Rohde, A., Denhof, D., & Freitag, M. (2019). Design and simulation of a control algorithm for peak-load shaving using vehicle to grid technology. SN Applied Sciences, 1(9). https://doi.org/10.1007/s42452-019-0999-x
  • Cheikh-Mohamad, S., Celik, B., Sechilariu, M., & Locment, F. (2023). Pv-powered charging station with energy cost optimization via v2g services. Applied Sciences, 13(9), 5627. https://doi.org/10.3390/app13095627
  • Deeum, S., Charoenchan, T., Janjamraj, N., Romphochai, S., Baum, S., Ohgaki, H., ... & Bhumkittipich, K. (2023). Optimal placement of electric vehicle charging stations in an active distribution grid with photovoltaic and battery energy storage system integration. Energies, 16(22), 7628. https://doi.org/10.3390/en16227628
  • Eltamaly, A. M. (2023). Optimal dispatch strategy for electric vehicles in v2g applications. Smart Cities, 6(6), 3161–3191. https://doi.org/10.3390/smartcities6060141
  • Esfahani, F., Darwish, A., & Williams, B. (2022). Power converter topologies for grid-tied solar photovoltaic (pv) powered electric vehicles (evs)—A comprehensive review. Energies, 15(13), 4648. https://doi.org/10.3390/en15134648
  • Fulari, S., & Kaa, G. V. D. (2021). Overcoming bottlenecks for realizing a vehicle-to-grid infrastructure in europe through standardization. Electronics, 10(5), 582. https://doi.org/10.3390/electronics10050582
  • Gagangras, A., Manshadi, S. D., & Soofi, A. (2023). Zero-carbon ac/dc microgrid planning by leveraging vehicle-to-grid technologies. Energies, 16(18), 6446. https://doi.org/10.3390/en16186446
  • Giordano, F. M., Diaz-Londono, C., & Gruosso, G. (2023). Comprehensive aggregator methodology for evs in v2g operations and electricity markets. IEEE Open Journal of Vehicular Technology, 4, 809–819. https://doi.org/10.1109/ojvt.2023.3323087
  • Gowda, S., Eraqi, B., Nazaripouya, H., & Gadh, R. (2021). Assessment and tracking electric vehicle battery degradation cost using blockchain. In 2021 IEEE International Conference on Smart Grid Technology (ISGT) (pp. 1–5). https://doi.org/10.1109/isgt49243.2021.9372218
  • Güngör, İ. (2025). Yenilenebilir enerji destekli elektrikli araç şarj i̇stasyonu ve şebekeye geri besleme (V2G) entegrasyonu (Yayınlanmamış yüksek lisans tezi, KSÜ, Fen Bilimleri Enstitüsü, Kahramanmaraş, 2025.) Hosseini, S. H., Ghazi, R., & Heydari‐doostabad, H. (2021). An extendable quadratic bidirectional dc–dc converter for v2g and g2v applications. IEEE Transactions on Industrial Electronics, 68(6), 4859–4869. https://doi.org/10.1109/tie.2020.2992967
  • İnci, M., Çelik, Ö., Lashab, A. M., Bayındır, K. Ç., Vásquez, J. C., & Guerrero, J. M. (2024). Power system integration of electric vehicles: A review on impacts and contributions to the smart grid. Applied Sciences, 14(6), 2246. https://doi.org/10.3390/app14062246
  • Lenka, R. K., Panda, A. K., Patel, R. N., & Guerrero, J. M. (2022). Pv integrated multifunctional off-board ev charger with improved grid power quality. IEEE Transactions on Industry Applications, 58(5), 5520–5532. https://doi.org/10.1109/tia.2022.3167659
  • Mao, T., Zhang, X., & Zhou, B. (2018). Modeling and solving method for supporting ‘vehicle-to-anything’ ev charging mode. Applied Sciences, 8(7), 1048. https://doi.org/10.3390/app8071048
  • Martin, X., Escoto, M., Guerrero, A., & Juan, À. (2024). Battery management in electric vehicle routing problems: A review. Energies, 17(5), 1141. https://doi.org/10.3390/en17051141
  • Monteiro, V., Pinto, J. G., & Afonso, J. L. (2018). Experimental validation of a three-port integrated topology to interface electric vehicles and renewables with the electrical grid. IEEE Transactions on Industrial Informatics, 14(6), 2364–2374. https://doi.org/10.1109/tii.2018.2818174
  • Mouli, G. R. C., Schijffelen, J., Heuvel, M., Kardolus, M., & Bauer, P. (2019). A 10 kw solar-powered bidirectional ev charger compatible with chademo and combo. IEEE Transactions on Power Electronics, 34(2), 1082–1098. https://doi.org/10.1109/tpel.2018.2829211
  • Nordin, A., & Sazali, N. (2022). A study of mppt charge controller roles in photovoltaic energy management. Emerging Advances in Integrated Technology, 3(1). https://doi.org/10.30880/emait.2022.03.01.004
  • Pan, W., Yu, X., Guo, Z., Qian, T., & Li, Y. (2024). Online evs vehicle-to-grid scheduling coordinated with multi-energy microgrids: A deep reinforcement learning-based approach. Energies, 17(11), 2491. https://doi.org/10.3390/en17112491
  • Pinto, J. G., Monteiro, V., Gonçalves, H., Exposto, B., Pedrosa, D., Couto, C., ... & Afonso, J. L. (2013). Bidirectional battery charger with grid-to-vehicle, vehicle-to-grid and vehicle-to-home technologies. In IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society (pp. 5934–5939). https://doi.org/10.1109/iecon.2013.6700108
  • Rani, G. L., Priya, P. M., Jayan, J., Satheesh, R. K., & Kolhe, M. (2024). Data-driven energy management of an electric vehicle charging station using deep reinforcement learning. IEEE Access, 12, 65956–65966. https://doi.org/10.1109/access.2024.3398059
  • Safayatullah, M., Elrais, M., Ghosh, S., Rezaii, R., & Batarseh, I. (2022). A comprehensive review of power converter topologies and control methods for electric vehicle fast charging applications. IEEE Access, 10, 40753–40793. https://doi.org/10.1109/access.2022.3166935
  • Shi, L., Lv, T., & Wang, Y. (2018). Vehicle-to-grid service development logic and management formulation. Journal of Modern Power Systems and Clean Energy, 7(4), 935–947. https://doi.org/10.1007/s40565-018-0464-7 Tan, K. M., Ramachandaramurthy, V. K., & Yong, J. Y. (2016). Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable and Sustainable Energy Reviews, 53, 720–732. https://doi.org/10.1016/j.rser.2015.09.012
  • Valdmanis, G., Rieksta, M., Luksta, I., & Bažbauers, G. (2022). Solar energy based charging for electric vehicles at fuel stations. Environmental and Climate Technologies, 26(1), 1169–1181. https://doi.org/10.2478/rtuect-2022-0088
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Enerjisi Depolama, Elektrik Enerjisi Taşıma, Şebeke ve Sistemleri, Güneş Enerjisi Sistemleri
Bölüm Araştırma Makalesi
Yazarlar

İlyas Güngör 0000-0002-7042-0452

Erdal Kılıç 0000-0002-1572-6109

Gönderilme Tarihi 16 Aralık 2025
Kabul Tarihi 31 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 2

Kaynak Göster

APA Güngör, İ., & Kılıç, E. (2025). YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi, 7(2), 139-158.
AMA Güngör İ, Kılıç E. YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ. UMÜFED. Aralık 2025;7(2):139-158.
Chicago Güngör, İlyas, ve Erdal Kılıç. “YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7, sy. 2 (Aralık 2025): 139-58.
EndNote Güngör İ, Kılıç E (01 Aralık 2025) YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7 2 139–158.
IEEE İ. Güngör ve E. Kılıç, “YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ”, UMÜFED, c. 7, sy. 2, ss. 139–158, 2025.
ISNAD Güngör, İlyas - Kılıç, Erdal. “YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7/2 (Aralık2025), 139-158.
JAMA Güngör İ, Kılıç E. YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ. UMÜFED. 2025;7:139–158.
MLA Güngör, İlyas ve Erdal Kılıç. “YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi, c. 7, sy. 2, 2025, ss. 139-58.
Vancouver Güngör İ, Kılıç E. YENİLENEBİLİR ENERJİ DESTEKLİ ÇİFT YÖNLÜ ELEKTRİKLİ ARAÇ ŞARJ SİSTEMİNİN SİMÜLASYON TABANLI TASARIMI VE ANALİZİ. UMÜFED. 2025;7(2):139-58.