Araştırma Makalesi
BibTex RIS Kaynak Göster

ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ

Yıl 2025, Cilt: 7 Sayı: 1, 1 - 30, 18.07.2025

Öz

Yangın, insan hayatı ve mühendislik yapıları için önemli bir tehdittir. İnşaat mühendisleri ve mimarlar, tasarım amaçlarından ve yangın güvenliği gerekliliklerinden ödün vermeden, daha güvenli ve sürdürülebilir ürün arayışı içerisinde olmaktadır. Bu sebeple, yapılarda çok yoğun bir şekilde kullanılan beton ve çimentolu diğer ürünlerin yangına karşı direncinin artırılması araştırmacılar tarafından geliştirilen önemli bir konudur. Bu amaçla, bu çalışmada, 3 mm uzunluğunda fiziksel geri dönüşümle elde edilmiş tekstil tipi cam lifi kullanılarak üretilen çimentolu hafif kompozit harçların fiziksel ve mekanik özelliklerinin yanında harçların doğrudan aleve maruz bırakılması sonucu taşıyabildiği en büyük sıcaklıklar ve bu sıcaklıklara karşılık gelen ağırlık kayıpları tespit edilmiştir. Cam liflerin çimentolu kompozit harçların yüksek sıcaklık dayanıklılığı üzerindeki etkisini belirlemek amacıyla atık karton yerine ağırlıkça %0, %0,25, %0,50, %0,75, %1,00, %1,50, %2,00, %3,00, %4,00 ve %6,00 oranlarında cam lifi kullanılarak on farklı kompozit harç karışımı üretilmiştir. Çalışma sonuçlarına göre, lif oranı arttıkça harçların su emme ve görünür gözeneklilikleri azalmış, eğilme dayanımları beklendiği üzere artmıştır. Lif kullanımının artması, aleve maruz kalan yüzeyde oluşabilecek en büyük sıcaklık değerini 902 °C’den 1088 °C’ye kadar çıkarabilmiştir. Bunun yanında, malzemenin yüzey sıcaklığındaki artışa rağmen lif kullanımı ile doğrudan aleve maruziyet sonrası harçların ağırlık kaybı azalmıştır.

Kaynakça

  • [1] Johnston CD. Fiber-Reinforced Cements and Concretes. Crc Press 2014.
  • [2] Kalkan ŞO, Yavaş A, Güler S, Kayalar MT, Sütçü M, Gündüz L. An experimental approach to a cementitious lightweight composite mortar using synthetic wollastonite. Construction and Building Materials 2022; 341: 127911.
  • [3] KALKAN ŞO, GÜNDÜZ L. Structural strength properties of waste textile fiber reinforced cementitious lightweight composite mortars. Sakarya University Journal of Science 2022; 26(6): 1180–1195.
  • [4] Uğurer O, Kalkan ŞO, Gündüz L. Poli vinil alkol (pva) lif boyutunun çimento esaslı hafif harcın özelliklerine etkisi üzerine bir inceleme. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2023; 25(2): 543–563.
  • [5] Kalkan ŞO, Öcal Hİ, Gündüz L. Effect of denim waste fibres on technical properties of cementitious lightweight composite mortars. Journal of Innovations in Civil Engineering and Technology 2023; 5(2): 71–90.
  • [6] Anandaraj S, Rooby J, Awoyera PO, Gobinath R. Structural distress in glass fibre-reinforced concrete under loading and exposure to aggressive environments. Construction and Building Materials 2019; 197: 862–870.
  • [7] Wang W-C, Wang H-Y, Chang K-H, Wang S-Y. Effect of high temperature on the strength and thermal conductivity of glass fiber concrete. Construction and Building Materials 2020; 245: 118387.
  • [8] Çankal D, Kalkan ŞO, Öztürk AU, Gündüz L. An investigation of the usage of glass wastes in cement mortars using full factorial design. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2023; 25(74): 405–416.
  • [9] Kasagani H, Rao CBK. Effect of graded fibers on stress strain behaviour of glass fiber reinforced concrete in tension. Construction and Building Materials 2018; 183: 592–604.
  • [10] Qureshi LA, Muhammad U. Effects of incorporating steel and glass fibers on shear behavior of concrete column-beam joints. KSCE Journal of Civil Engineering 2018; 22: 2970–2981.
  • [11] Yildizel SA, Timur O, Ozturk AU. Abrasion resistance and mechanical properties of waste-glass-fiber-reinforced roller-compacted concrete. Mechanics of Composite Materials 2018; 54: 251–256.
  • [12] Khan M, Ali M. Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Construction and Building Materials 2016; 125: 800–808.
  • [13] Fang Y, Chen B, Oderji SY. Experimental research on magnesium phosphate cement mortar reinforced by glass fiber. Construction and Building Materials 2018; 188: 729–736.
  • [14] Moosaei HR, Zareei AR, Salemi N. Elevated temperature performance of concrete reinforced with steel, glass, and polypropylene fibers and fire-proofed with coating. International Journal of Engineering 2022; 35(5): 917–930.
  • [15] Choi Y, Yuan RL. Experimental relationship between splitting tensile strength and compressive strength of gfrc and pfrc. Cement and Concrete Research 2005; 35(8): 1587–1591.
  • [16] Al Qadi ANS, Al-Zaidyeen SM. Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures. Journal of King Saud University-Engineering Sciences 2014; 26(1): 33–39.
  • [17] Novák J, Kohoutková A. Fibre Reinforced Concrete Exposed to Elevated Temperature. In:. IOP Conf. Ser. Mater. Sci. Eng., vol. 246. IOP Publishing 2017; 12045.
  • [18] Serrano R, Cobo A, Prieto MI, de las Nieves González M. Analysis of fire resistance of concrete with polypropylene or steel fibers. Construction and Building Materials 2016; 122: 302–309.
  • [19] Lee J, Terada K, Yamazaki M, Harada K. Impact of melting and burnout of polypropylene fibre on air permeability and mechanical properties of high-strength concrete. Fire Safety Journal 2017; 91: 553–560.
  • [20] Yermak N, Pliya P, Beaucour A-L, Simon A, Noumowé A. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: spalling, transfer and mechanical properties. Construction and Building Materials 2017; 132: 240–250.
  • [21] Jameran A, Ibrahim IS, Yazan SHS, Rahim SNAA. Mechanical properties of steel-polypropylene fibre reinforced concrete under elevated temperature. Procedia Engineering 2015; 125: 818–824.
  • [22] Abdul Rashid MK, Ramli Sulong NH, Alengaram UJ. Fire resistance performance of composite coating with geopolymer‐based bio‐fillers for lightweight panel application. Journal of Applied Polymer Science 2020; 137(47): 49558.
  • [23] Mo KH, Hussin MN, Ling T-C, Sulong NHR, Lee FW, Yuen CW. Development of lightweight aggregate mortar skin layer for an innovative sandwich concrete composite. Journal of Building Engineering 2020; 27: 100941.
  • [24] de Sá Teles e Lima G, Torres SM, Gomes KC, de Barros SR, Leal AF, Lima Filho MRF. Behavior of sisal fiber mat reinforced alkaline activated metakaolin matrix under direct flame. Key Engineering Materials 2014; 600: 433–441.
  • [25] Vásquez-Molina D, Mejía-Arcila JM, Gutiérrez RM. Mechanical and thermal performance of a geopolymeric and hybrid material based on fly ash. Dyna 2016; 83(195): 216–223.
  • [26] Salahuddin MBM, Mazlan N, Mustapha F, Ishak MR, Saprudin AA. Factorial design approach to investigate the significance of factors on the fire resistant, compression and adhesion properties of geopolymer binder. Journal of Mechanical Engineering and Sciences 2020; 14(3): 7191–7204.
  • [27] Basri MSM, Mazlan N, Mustapha F, Ishak MR. Correlation between Compressive Strength and Fire Resistant Performance of Rice Husk Ash-Based Geopolymer Binder for Panel Applications. In:. MATEC Web Conf., vol. 97. EDP Sciences 2017; 1025.
  • [28] Mohd Basri MS, Mustapha F, Mazlan N, Ishak MR. Rice husk ash-based geopolymer binder: compressive strength, optimize composition, ftir spectroscopy, microstructural, and potential as fire-retardant material. Polymers 2021; 13(24): 4373.
  • [29] Kalkan M, Erenson C. Direct flame test performance of boards containing waste undersized pumice materials. Journal of Engineering Research 2023.
  • [30] Moghadam MA, Izadifard RA. Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures. Fire Safety Journal 2020; 113: 102978.
  • [31] Ravikumar CS, Thandavamoorthy TS. Glass fibre concrete: investigation on strength and fire resistant properties. IOSR Journal of Mechanical and Civil Engineering 2013; 9(3): 2320–2334.
  • [32] Keykha AH. Experimental investigation of the strength of glass fiber-reinforced concrete exposed to high temperature. Mechanics of Advanced Composite Structures 2018; 5(2): 103–113.
  • [33] Wu C-H, Chi J-H, Wang W-C, Chien C-C. Effect of glass fiber and high temperature on the mechanical properties of recycled aggregate concrete. Journal of Thermal Analysis and Calorimetry 2023; 148(11): 4655–4668.
  • [34] Haigh R, Bouras Y, Sandanayake M, Vrcelj Z. The mechanical performance of recycled cardboard kraft fibres within cement and concrete composites. Construction and Building Materials 2022; 317: 125920.
  • [35] Ahmad A, Rahman M, Khalil A, Adil M, Khan M. Efficient Use of Waste Cardboard in Construction Material. In:. 4th Conf. Sustain. Process Ind. 2018; 23–27.
  • [36] Gündüz L, Kalkan ŞO. Yarı pul mika ve mikronize magnezyanın isı dirençli hafif harcın dayanım performansına olan etkisi. Karadeniz Fen Bilimleri Dergisi 2023; 13(2): 288–309.
  • [37] Ahmad A, Adil M, Khalil A, Rahman M. Mechanical properties and durability of boardcrete blocks prepared from recycled cardboard. Journal of Building Engineering 2021; 33: 101644.
  • [38] Turkish Standards Institution. TS EN 1015-6, Methods of Test for Mortar for Masonry - Part 7: Determination of Air Content of Fresh Mortar. Ankara: 2000.
  • [39] Turkish Standards Institution. TS EN 1015-10, Methods of Test for Mortar for Masonry- Part 10: Determination of Dry Bulk Density of Hardened Mortar. Ankara: 2001.
  • [40] ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA: 2013.
  • [41] TS EN 1015-11 Kagir Harcı - Deney Yöntemleri - Bölüm 11: Sertleşmiş Harcın Eğilmede Çekme ve Basınç Dayanımının Tayini. n.d.
  • [42] TS EN 998-1, Specification for Mortar for Masonry — Part 1: Rendering and Plastering Mortar. 2017.
  • [43] Adhikary SK, Rudžionis Ž, Vaičiukynienė D. Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering 2020; 31: 101399.
  • [44] Ślosarczyk A, Vashchuk A, Klapiszewski Ł. Research development in silica aerogel incorporated cementitious composites—a review. Polymers 2022; 14(7): 1456.
  • [45] Ng S, Jelle BP, Sandberg LIC, Gao T, Wallevik ÓH. Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials 2015; 77: 307–316.
  • [46] Khorami M, Ganjian E, Mortazavi A, Saidani M, Olubanwo A, Gand A. Utilisation of waste cardboard and nano silica fume in the production of fibre cement board reinforced by glass fibres. Construction and Building Materials 2017; 152: 746–755.
  • [47] Banthia N, Sheng J. Fracture toughness of micro-fiber reinforced cement composites. Cement and Concrete Composites 1996; 18(4): 251–269.

Effect of Glass Fiber Use on High Temperature Interaction Resistance in the Production of New Generation Cement Mortar with Waste Cardboard Additive

Yıl 2025, Cilt: 7 Sayı: 1, 1 - 30, 18.07.2025

Öz

Fire is a significant threat to human life and engineering structures. Civil engineers and architects are in search of safer and more sustainable products without compromising design objectives and fire safety requirements. For this reason, increasing the fire resistance of concrete and other cementitious products, which are used intensively in structures, is an important issue developed by researchers. For this purpose, in this study, the physical and mechanical properties of lightweight cementitious composite mortars produced using 3 mm long physically recycled textile type glass fiber, as well as the maximum temperatures that the mortars can withstand when exposed directly to flame and the weight losses corresponding to these temperatures were determined. In order to determine the effect of glass fibers on the high temperature resistance of cementitious composite mortars, ten different composite mortar mixtures were produced by using glass fibers at the rates of 0%, 0.25%, 0.50%, 0.75%, 1.00%, 1.50%, 2.00%, 3.00%, 4.00% and 6.00% by weight instead of waste cardboard. According to the study results, as the fiber ratio increased, the water absorption and apparent porosity of the mortars decreased, and their flexural strength increased as expected. The increase in the use of fibers increased the maximum temperature value that could occur on the surface exposed to flame from 902 °C to 1088 °C. In addition, despite the increase in the surface temperature of the material, the weight loss of the mortars directly after exposure to flame decreased with the use of fibers.

Kaynakça

  • [1] Johnston CD. Fiber-Reinforced Cements and Concretes. Crc Press 2014.
  • [2] Kalkan ŞO, Yavaş A, Güler S, Kayalar MT, Sütçü M, Gündüz L. An experimental approach to a cementitious lightweight composite mortar using synthetic wollastonite. Construction and Building Materials 2022; 341: 127911.
  • [3] KALKAN ŞO, GÜNDÜZ L. Structural strength properties of waste textile fiber reinforced cementitious lightweight composite mortars. Sakarya University Journal of Science 2022; 26(6): 1180–1195.
  • [4] Uğurer O, Kalkan ŞO, Gündüz L. Poli vinil alkol (pva) lif boyutunun çimento esaslı hafif harcın özelliklerine etkisi üzerine bir inceleme. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2023; 25(2): 543–563.
  • [5] Kalkan ŞO, Öcal Hİ, Gündüz L. Effect of denim waste fibres on technical properties of cementitious lightweight composite mortars. Journal of Innovations in Civil Engineering and Technology 2023; 5(2): 71–90.
  • [6] Anandaraj S, Rooby J, Awoyera PO, Gobinath R. Structural distress in glass fibre-reinforced concrete under loading and exposure to aggressive environments. Construction and Building Materials 2019; 197: 862–870.
  • [7] Wang W-C, Wang H-Y, Chang K-H, Wang S-Y. Effect of high temperature on the strength and thermal conductivity of glass fiber concrete. Construction and Building Materials 2020; 245: 118387.
  • [8] Çankal D, Kalkan ŞO, Öztürk AU, Gündüz L. An investigation of the usage of glass wastes in cement mortars using full factorial design. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2023; 25(74): 405–416.
  • [9] Kasagani H, Rao CBK. Effect of graded fibers on stress strain behaviour of glass fiber reinforced concrete in tension. Construction and Building Materials 2018; 183: 592–604.
  • [10] Qureshi LA, Muhammad U. Effects of incorporating steel and glass fibers on shear behavior of concrete column-beam joints. KSCE Journal of Civil Engineering 2018; 22: 2970–2981.
  • [11] Yildizel SA, Timur O, Ozturk AU. Abrasion resistance and mechanical properties of waste-glass-fiber-reinforced roller-compacted concrete. Mechanics of Composite Materials 2018; 54: 251–256.
  • [12] Khan M, Ali M. Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks. Construction and Building Materials 2016; 125: 800–808.
  • [13] Fang Y, Chen B, Oderji SY. Experimental research on magnesium phosphate cement mortar reinforced by glass fiber. Construction and Building Materials 2018; 188: 729–736.
  • [14] Moosaei HR, Zareei AR, Salemi N. Elevated temperature performance of concrete reinforced with steel, glass, and polypropylene fibers and fire-proofed with coating. International Journal of Engineering 2022; 35(5): 917–930.
  • [15] Choi Y, Yuan RL. Experimental relationship between splitting tensile strength and compressive strength of gfrc and pfrc. Cement and Concrete Research 2005; 35(8): 1587–1591.
  • [16] Al Qadi ANS, Al-Zaidyeen SM. Effect of fibre content and specimen shape on residual strength of polypropylene fibre self-compacting concrete exposed to elevated temperatures. Journal of King Saud University-Engineering Sciences 2014; 26(1): 33–39.
  • [17] Novák J, Kohoutková A. Fibre Reinforced Concrete Exposed to Elevated Temperature. In:. IOP Conf. Ser. Mater. Sci. Eng., vol. 246. IOP Publishing 2017; 12045.
  • [18] Serrano R, Cobo A, Prieto MI, de las Nieves González M. Analysis of fire resistance of concrete with polypropylene or steel fibers. Construction and Building Materials 2016; 122: 302–309.
  • [19] Lee J, Terada K, Yamazaki M, Harada K. Impact of melting and burnout of polypropylene fibre on air permeability and mechanical properties of high-strength concrete. Fire Safety Journal 2017; 91: 553–560.
  • [20] Yermak N, Pliya P, Beaucour A-L, Simon A, Noumowé A. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: spalling, transfer and mechanical properties. Construction and Building Materials 2017; 132: 240–250.
  • [21] Jameran A, Ibrahim IS, Yazan SHS, Rahim SNAA. Mechanical properties of steel-polypropylene fibre reinforced concrete under elevated temperature. Procedia Engineering 2015; 125: 818–824.
  • [22] Abdul Rashid MK, Ramli Sulong NH, Alengaram UJ. Fire resistance performance of composite coating with geopolymer‐based bio‐fillers for lightweight panel application. Journal of Applied Polymer Science 2020; 137(47): 49558.
  • [23] Mo KH, Hussin MN, Ling T-C, Sulong NHR, Lee FW, Yuen CW. Development of lightweight aggregate mortar skin layer for an innovative sandwich concrete composite. Journal of Building Engineering 2020; 27: 100941.
  • [24] de Sá Teles e Lima G, Torres SM, Gomes KC, de Barros SR, Leal AF, Lima Filho MRF. Behavior of sisal fiber mat reinforced alkaline activated metakaolin matrix under direct flame. Key Engineering Materials 2014; 600: 433–441.
  • [25] Vásquez-Molina D, Mejía-Arcila JM, Gutiérrez RM. Mechanical and thermal performance of a geopolymeric and hybrid material based on fly ash. Dyna 2016; 83(195): 216–223.
  • [26] Salahuddin MBM, Mazlan N, Mustapha F, Ishak MR, Saprudin AA. Factorial design approach to investigate the significance of factors on the fire resistant, compression and adhesion properties of geopolymer binder. Journal of Mechanical Engineering and Sciences 2020; 14(3): 7191–7204.
  • [27] Basri MSM, Mazlan N, Mustapha F, Ishak MR. Correlation between Compressive Strength and Fire Resistant Performance of Rice Husk Ash-Based Geopolymer Binder for Panel Applications. In:. MATEC Web Conf., vol. 97. EDP Sciences 2017; 1025.
  • [28] Mohd Basri MS, Mustapha F, Mazlan N, Ishak MR. Rice husk ash-based geopolymer binder: compressive strength, optimize composition, ftir spectroscopy, microstructural, and potential as fire-retardant material. Polymers 2021; 13(24): 4373.
  • [29] Kalkan M, Erenson C. Direct flame test performance of boards containing waste undersized pumice materials. Journal of Engineering Research 2023.
  • [30] Moghadam MA, Izadifard RA. Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures. Fire Safety Journal 2020; 113: 102978.
  • [31] Ravikumar CS, Thandavamoorthy TS. Glass fibre concrete: investigation on strength and fire resistant properties. IOSR Journal of Mechanical and Civil Engineering 2013; 9(3): 2320–2334.
  • [32] Keykha AH. Experimental investigation of the strength of glass fiber-reinforced concrete exposed to high temperature. Mechanics of Advanced Composite Structures 2018; 5(2): 103–113.
  • [33] Wu C-H, Chi J-H, Wang W-C, Chien C-C. Effect of glass fiber and high temperature on the mechanical properties of recycled aggregate concrete. Journal of Thermal Analysis and Calorimetry 2023; 148(11): 4655–4668.
  • [34] Haigh R, Bouras Y, Sandanayake M, Vrcelj Z. The mechanical performance of recycled cardboard kraft fibres within cement and concrete composites. Construction and Building Materials 2022; 317: 125920.
  • [35] Ahmad A, Rahman M, Khalil A, Adil M, Khan M. Efficient Use of Waste Cardboard in Construction Material. In:. 4th Conf. Sustain. Process Ind. 2018; 23–27.
  • [36] Gündüz L, Kalkan ŞO. Yarı pul mika ve mikronize magnezyanın isı dirençli hafif harcın dayanım performansına olan etkisi. Karadeniz Fen Bilimleri Dergisi 2023; 13(2): 288–309.
  • [37] Ahmad A, Adil M, Khalil A, Rahman M. Mechanical properties and durability of boardcrete blocks prepared from recycled cardboard. Journal of Building Engineering 2021; 33: 101644.
  • [38] Turkish Standards Institution. TS EN 1015-6, Methods of Test for Mortar for Masonry - Part 7: Determination of Air Content of Fresh Mortar. Ankara: 2000.
  • [39] Turkish Standards Institution. TS EN 1015-10, Methods of Test for Mortar for Masonry- Part 10: Determination of Dry Bulk Density of Hardened Mortar. Ankara: 2001.
  • [40] ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. West Conshohocken, PA: 2013.
  • [41] TS EN 1015-11 Kagir Harcı - Deney Yöntemleri - Bölüm 11: Sertleşmiş Harcın Eğilmede Çekme ve Basınç Dayanımının Tayini. n.d.
  • [42] TS EN 998-1, Specification for Mortar for Masonry — Part 1: Rendering and Plastering Mortar. 2017.
  • [43] Adhikary SK, Rudžionis Ž, Vaičiukynienė D. Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. Journal of Building Engineering 2020; 31: 101399.
  • [44] Ślosarczyk A, Vashchuk A, Klapiszewski Ł. Research development in silica aerogel incorporated cementitious composites—a review. Polymers 2022; 14(7): 1456.
  • [45] Ng S, Jelle BP, Sandberg LIC, Gao T, Wallevik ÓH. Experimental investigations of aerogel-incorporated ultra-high performance concrete. Construction and Building Materials 2015; 77: 307–316.
  • [46] Khorami M, Ganjian E, Mortazavi A, Saidani M, Olubanwo A, Gand A. Utilisation of waste cardboard and nano silica fume in the production of fibre cement board reinforced by glass fibres. Construction and Building Materials 2017; 152: 746–755.
  • [47] Banthia N, Sheng J. Fracture toughness of micro-fiber reinforced cement composites. Cement and Concrete Composites 1996; 18(4): 251–269.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Şevket Onur Kalkan 0000-0003-0250-8134

Lütfullah Gündüz 0000-0003-2487-467X

Yayımlanma Tarihi 18 Temmuz 2025
Gönderilme Tarihi 28 Eylül 2024
Kabul Tarihi 17 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Kalkan, Ş. O., & Gündüz, L. (2025). ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi, 7(1), 1-30.
AMA Kalkan ŞO, Gündüz L. ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ. UMÜFED. Temmuz 2025;7(1):1-30.
Chicago Kalkan, Şevket Onur, ve Lütfullah Gündüz. “ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7, sy. 1 (Temmuz 2025): 1-30.
EndNote Kalkan ŞO, Gündüz L (01 Temmuz 2025) ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7 1 1–30.
IEEE Ş. O. Kalkan ve L. Gündüz, “ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ”, UMÜFED, c. 7, sy. 1, ss. 1–30, 2025.
ISNAD Kalkan, Şevket Onur - Gündüz, Lütfullah. “ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 7/1 (Temmuz2025), 1-30.
JAMA Kalkan ŞO, Gündüz L. ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ. UMÜFED. 2025;7:1–30.
MLA Kalkan, Şevket Onur ve Lütfullah Gündüz. “ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi, c. 7, sy. 1, 2025, ss. 1-30.
Vancouver Kalkan ŞO, Gündüz L. ATIK KARTON KATKILI YENİ NESİL ÇİMENTOLU HARÇ ÜRETİMİNDE CAM LİFİ KULLANIMININ YÜKSEK SICAKLIK ETKİLEŞİM DİRENCİNE ETKİSİ. UMÜFED. 2025;7(1):1-30.